Skip to main content
Log in

Non-linear heat and mass transfer in a MHD Homann nanofluid flow through a porous medium with chemical reaction, heat generation and uniform inflow

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The steady MHD axisymmetric flow of an incompressible viscous electrically conducting nanofluid impinging on a permeable plate is investigated with heat and mass transfer. An external uniform magnetic field as well as a uniform inflow, in the presence of either suction or injection, are applied normal to the plate. The effects of heat (generation/absorption) and chemical reaction have been accentuated. This study indicates the incorporated influence of both the thermophoresis phenomenon and the Brownian behavior. Numerical solutions for the governing non-linear momentum, energy and nanoparticle equations have been obtained. The rates of heat and mass transfer are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hiemenz, Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder, in Dingler Polytechnisches Journal, Vol. 326 (1911) pp. 321--410

  2. F. Homann, Z. Angew. Math. Mech. 16, 153 (1936)

    Article  Google Scholar 

  3. H. Schlichting, K. Bussmann, Exakte Lösungen für die laminare Grenzschicht mit Absaugung und Ausblasen, in Schriften der Deutschen Akademie der Luftfahrtforschung: B, Vol. 7 (Oldenbourg, 1943) p. 25

  4. J.H. Preston, Reports and Memoirs (British Aerospace Research Council, London, 1946) No. 2244

  5. P.D. Ariel, J. Appl. Mech. 61, 976 (1994)

    Article  ADS  Google Scholar 

  6. P.D. Weidman, S. Mahalingam, J. Eng. Math. 31, 305 (1997)

    Article  MathSciNet  Google Scholar 

  7. T.Y. Na, Computational Methods in Engineering Boundary Value Problem (Academic Press, New York, 1979)

  8. S.R. Pop, T. Grosan, I. Pop, Tech. Mech. 25, 100 (2004)

    Google Scholar 

  9. K. Sadeghy, H. Hajibeygi, S.M. Taghavi, Int. J. Non-Linear Mech. 41, 1242 (2006)

    Article  ADS  Google Scholar 

  10. V. Kumaran, R. Tamizharasi, K. Vajravelu, Commun. Nonlinear Sci. Numer. Simul. 14, 2677 (2009)

    Article  ADS  Google Scholar 

  11. M. Massoudi, M. Ramezan, Boundary layer heat transfer analysis of a viscoelastic fluid at a stagnation point, in ASME Heat Transfer Division, Vol 130 (ASME, 1990) pp. 81--86

  12. M. Massoudi, M. Ramezan, Mech. Res. Commun. 19, 129 (1992)

    Article  Google Scholar 

  13. V.K. Garg, Acta Mech. 104, 159 (1994)

    Article  Google Scholar 

  14. H.A. Attia, Turkish J. Eng. Environ. Sci. 30, 299 (2006)

    Google Scholar 

  15. Dinesh Rajotia, R.N. Jat, Chin. Phys. B 23, 074701 (2014)

    Article  ADS  Google Scholar 

  16. Krishnendu Bhattacharyya, Chin. Phys. B 22, 074705 (2013)

    Article  Google Scholar 

  17. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticle, in Developments and Applications of Non-Newtonian Flows, edited by D.A. Siginer, H.P. Wang, Vol. FED 231 (ASME, New York, 1995) pp. 99--105

  18. J. Buongiorno, J. Heat Transfer 128, 240 (2006)

    Article  Google Scholar 

  19. H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, NetsuBussei 4, 227 (1993)

    Google Scholar 

  20. J. Buongiorno, W. Hu, in Proceedings of International Congress on Advances in Nuclear Power Plants, Seoul, 2005 (Curran Associate, 2007) 5705

  21. N. Prabhat, J. Buongiorno, Lin-Wen Hu, J. Nanofluids 1, 55 (2012)

    Article  Google Scholar 

  22. A.V. Kuznetsov, D.A. Nield, Int. J. Thermal Sci. 49, 243 (2010)

    Article  Google Scholar 

  23. Noreen Sher Akbar, S. Nadeem, Rizwan Ul-Haq, Z.H. Khan, Chin. J. Aeronaut. 26, 1389 (2013)

    Article  Google Scholar 

  24. H.A. Attia, Can. J. Phys. 81, 1223 (2003)

    Article  ADS  Google Scholar 

  25. M.R. Krishnamurthy, B.C. Prasannakumara, B.J. Gireesha, R.S.R. Gorla, Eng. Sci. Technol. Int. J. 19, 53 (2016)

    Article  Google Scholar 

  26. B.C. Prasannakumara, M.R. Krishnamurthy, B.J. Gireesha, R.S.R. Gorla, J. Nanofluids 5, 82 (2016)

    Article  Google Scholar 

  27. W.A. Khan, I. Pop, Int. J. Heat Mass Transfer 53, 2477 (2010)

    Article  Google Scholar 

  28. N. Bachok, A. Ishak, I. Pop, Int. J. Heat Mass Transfer 55, 6499 (2012)

    Article  Google Scholar 

  29. O.D. Makinde, A. Aziz, Int. J. Therm. Sci. 49, 1813 (2010)

    Article  Google Scholar 

  30. O.D. Makinde, W.A. Khan, Z.H. Khan, Int. J. Heat Mass Transfer 62, 526 (2013)

    Article  Google Scholar 

  31. M. Wahiduzzaman, M.S. Khanb, I. Karimb, Proc. Eng. 105, 398 (2015)

    Article  Google Scholar 

  32. Kalidas Das, Microfluid Nanofluid 15, 267 (2013)

    Article  Google Scholar 

  33. M.A.A. Hamad, I. Pop, Transp. Porous Med. 87, 25 (2011)

    Article  MathSciNet  Google Scholar 

  34. S. Mansur, A. Ishak, I. Pop, PLoS ONE 10, e0117733 (2015)

    Article  Google Scholar 

  35. S. Khalili, S. Dinarvand, R. Hosseini, H. Tamim, I. Pop, Chin. Phys. B 23, 048203 (2014)

    Article  Google Scholar 

  36. D. Pal, G. Mandal, K. Vajravalu, Commun. Numer. Anal. 2015, 30 (2015)

    Article  MathSciNet  Google Scholar 

  37. S.E. Ahmed, A.M. Aly, M.A. Mansour, J. Nanofluids 4, 528 (2015)

    Article  Google Scholar 

  38. M. Thiagarajan, M. Selvaraj, J. Nanofluids 4, 328 (2015)

    Article  Google Scholar 

  39. G.W. Sutton, A. Sherman, Engineering Magnetohydrodynamics (McGraw-Hill, New York, 1965)

  40. N.T. El-Dabe, Can. J. Phys. 64, 84 (1986)

    Article  ADS  Google Scholar 

  41. D.B. Ingham, I. Pop, Transport Phenomena in Porous Media (Pergamon, Oxford, 2002)

  42. N.T. Eldabe, M.Y. Abou-zeid, Arab J. Sci. Eng. 39, 5045 (2014)

    Article  Google Scholar 

  43. A.R.A. Khaled, K. Vafai, Int. J. Heat Mass Transfer 46, 4989 (2003)

    Article  Google Scholar 

  44. H. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1968)

  45. M.F. White, Viscous Fluid Flow (McGraw-Hill, New York, 1991)

  46. W.F. Ames, Numerical Solutions of Partial Differential Equations, 2nd edition (Academic Press, New York, 1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. I. Essawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL-Dabe, N.T., Attia, H.A., Essawy, M.A.I. et al. Non-linear heat and mass transfer in a MHD Homann nanofluid flow through a porous medium with chemical reaction, heat generation and uniform inflow. Eur. Phys. J. Plus 131, 395 (2016). https://doi.org/10.1140/epjp/i2016-16395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16395-8

Navigation