Skip to main content
Log in

Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, dynamics of time-dependent fractional-in-space nonlinear Schrödinger equation with harmonic potential \( V(x),x \in R\) in one, two and three dimensions have been considered. We approximate the Riesz fractional derivative with the Fourier pseudo-spectral method and advance the resulting equation in time with both Strang splitting and exponential time-differencing methods. The Riesz derivative introduced in this paper is found to be so convenient to be applied in models that are connected with applied science, physics, and engineering. We must also report that the Riesz derivative introduced in this work will serve as a complementary operator to the commonly used Caputo or Riemann-Liouville derivatives in the higher-dimensional case. In the numerical experiments, one expects the travelling wave to evolve from such an initial function on an infinite computational domain \( (-\infty, \infty)\) , which we truncate at some large, but finite values L. It is important that the value of L is chosen large enough to give enough room for the wave function to propagate. We observe a different distribution of complex wave functions for the focusing and defocusing cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

  2. S.G. Samko, A.A. Kilbas, O.I. Maritchev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, Amsterdam, 1993)

  3. A. Atangana, A. Secer, Abstr. Appl. Anal. 2013, 279681 (2013)

    MathSciNet  Google Scholar 

  4. A. Atangana, J. Comput. Phys. 293, 104 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Atangana, J.J. Nieto, Adv. Mech. Eng. 7, 1 (2015)

    Google Scholar 

  6. S. Das, Functional Fractional Calculus, 2nd edition (Springer-Verlag, Berlin, 2011)

  7. B. Guo, X. Pu, F. Huang, Fractional Partial Differential Equations and Their Numerical Solutions (World Scientific, Singapore, 2011)

  8. A.R. Haghighi, A. Dadvand, H.H. Ghejlo, Commun. Adv. Comput. Sci. Appl. 2014, 1 (2014)

    Google Scholar 

  9. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)

  10. G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, Oxford, 2005)

  11. M. Caputo, Geophys. J. Int. 13, 529 (1967) reprinted in Fract. Calculus Appl. Anal. 11

    Article  ADS  Google Scholar 

  12. A. Ashyralyev, J. Math. Anal. Appl. 357, 232 (2009)

    Article  MathSciNet  Google Scholar 

  13. N.A. Khan, N.U. Khan, A. Ara, M. Jamil, J. King Saud Univ. Sci. 24, 111 (2012)

    Article  Google Scholar 

  14. V. Daftardar-Gejji, S. Bhalekar, J. Math. Anal. Appl. 345, 754 (2008)

    Article  MathSciNet  Google Scholar 

  15. X. Li Ding, Y. Lin-Jiang, Nonlinear Anal. Real World Appl. 14, 1026 (2013)

    Article  MathSciNet  Google Scholar 

  16. N. Laskin, Phys. Rev. E 66, 056108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. Y. Zhang, X. Liu, M.R. Belić, W. Zhong, Y. Zhang, M. Xiao, Phys. Rev. Lett. 115, 180403 (2015)

    Article  ADS  Google Scholar 

  18. A.R. Plastino, C. Tsallis, J. Math. Phys. 54, 041505 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Liemert, A. Kienle, Mathematics 4, 31 (2016)

    Article  Google Scholar 

  20. A. Bueno-Orovio, D. Kay, K. Burrage, BIT Numer. Math. 54, 937 (2014)

    Article  MathSciNet  Google Scholar 

  21. C. Celik, M. Duman, J. Comput. Phys. 231, 1743 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. E. Pindza, K.M. Owolabi, Commun. Nonlinear Sci. Numer. Simul. 40, 112 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  23. P. Amore, F.M. Fernáandez, C.P. Hofmann, R.A. Sáenz, J. Math. Phys. 51, 122101 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 2, 1 (2016)

    Article  Google Scholar 

  26. M.D. Ortigueira, Int. J. Math. Math. Sci. 2006, 48391 (2006)

    Article  MathSciNet  Google Scholar 

  27. M. Naber, J. Math. Phys. 45, 3339 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  28. Y. Luchko, J. Math. Phys. 54, 012111 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. Y. Luchko, J. Math. Phys. 54, 031505 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. Y. Luchko, J. Comput. Phys. 293, 40 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  31. B. Al-Saqabi, L. Boyadjiev, Y. Luchko, Eur. Phys. J. ST 222, 1779 (2013)

    Article  Google Scholar 

  32. E. Hanert, Environ. Fluid Mech. 10, 7 (2010)

    Article  Google Scholar 

  33. E. Hanert, Comput. Fluids 46, 33 (2011)

    Article  MathSciNet  Google Scholar 

  34. M.M. Khader, Commun. Nonlinear Sci. Numer. Simul. 16, 2535 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  35. F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, V. Anh, SIAM J. Numer. Anal. 52, 2599 (2014)

    Article  MathSciNet  Google Scholar 

  36. F. Zeng, C. Li, F. Liu, I. Turner, SIAM J. Sci. Comput. 37, A55 (2015)

    Article  MathSciNet  Google Scholar 

  37. M. Zheng, F. Liu, I. Turner, V. Anh, SIAM J. Sci. Comput. 37, A701 (2015)

    Article  MathSciNet  Google Scholar 

  38. H.W. Choi, S.K. Chung, Y.J. Lee, Bull. Korean Math. Soc. 47, 1225 (2010)

    Article  MathSciNet  Google Scholar 

  39. M.M. Khader, N.H. Sweilam, A.M.S. Mahdy, J. Appl. Math. Bioinform. 1, 1 (2011)

    Google Scholar 

  40. M.M. Meerschaert, H.P. Scheffler, C. Tadjeran, J. Comput. Phys. 211, 249 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  41. C. Tadjeran, M.M. Meerschaert, H.P. Scheffler, J. Comput. Phys. 213, 205 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  42. V.J. Ervin, N. Heuer, J.P. Roop, SIAM J. Numer. Anal. 45, 572 (2007)

    Article  MathSciNet  Google Scholar 

  43. J. Roop, J. Comput. Appl. Math. 193, 243 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  44. D. Cai, A.J. Majda, D.W. McLaughlin, E.G. Tabak, Physica D 152-153, 551 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  45. V.E. Zakharov, P. Guyenne, A.N. Pushkarev, F. Dias, Physica D 152-153, 573 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  46. G. Marchuk, Splitting and Alternating Direction Methods, in Handbook of Numerical Analysis (North Holland, Amsterdam, 1990)

  47. G. Strang, SIAM J. Numer. Anal. 5, 506 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  48. S.M. Cox, P.C. Matthews, J. Comput. Phys. 176, 430 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  49. A.K. Kassam, L.N. Trefethen, SIAM J. Sci. Comput. 26, 1214 (2005)

    Article  MathSciNet  Google Scholar 

  50. S. Krogstad, J. Comput. Phys. 203, 72 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  51. K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (Dover Publications, Mineola, NY, 2006)

  52. K.M. Owolabi, K.C. Patidar, Int. J. Differ. Equ. 2015, 485860 (2015)

    MathSciNet  Google Scholar 

  53. K.M. Owolabi, K.C. Patidar, Appl. Math. Comput. 240, 30 (2014)

    Article  MathSciNet  Google Scholar 

  54. K.M. Owolabi, K.C. Patidar, Int. J. Nonlinear Sci. Numer. Simul. 15, 437 (2014)

    Article  MathSciNet  Google Scholar 

  55. K.M. Owolabi, K.C. Patidar, Theor. Biol. Med. Model. 13, 1 (2016)

    Article  Google Scholar 

  56. K.M. Owolabi, K.C. Patidar, SpringerPlus 5, 303 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolade M. Owolabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owolabi, K., Atangana, A. Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative. Eur. Phys. J. Plus 131, 335 (2016). https://doi.org/10.1140/epjp/i2016-16335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16335-8

Navigation