Skip to main content
Log in

Slow viscous stream over a non-Newtonian fluid sphere in an axisymmetric deformed spherical vessel

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The creeping motion of a non-Newtonian (Reiner-Rivlin) liquid sphere at the instant it passes the center of an approximate spherical container is discussed. The flow in the spheroidal container is governed by the Stokes equation, while for the flow inside the Reiner-Rivlin liquid sphere, the expression for the stream function is obtained by expressing it in the power series of a parameter S , characterizing the cross-viscosity. Both the flow fields are then determined explicitly by matching the boundary conditions at the interface of Newtonian fluid and non-Newtonian fluid, and also the condition of imperviousness and no-slip on the outer surface. As an application, we have considered an oblate spheroidal container. The drag and wall effects on the liquid spherical body are evaluated. Their variations with regard to the separation parameter ℓ , viscosity ratio \( \lambda\), cross-viscosity S, and deformation parameter \( \varepsilon\) are studied and demonstrated graphically. Several renowned cases are derived from the present analysis. It is observed that the drag not only varies with \( \varepsilon\), but as ℓ increases, the rate of change in behavior of drag force also increases. The influences of these parameters on the wall effects has also been studied and presented in a table.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.G. Stokes, On the effect of the internal friction of fluids on the motion of pendulums, in Transactions of the Cambridge Philosophical Society, Vol. 9, no. 2 (1851) pp. 8--06

  2. H. Ramkissoon, J. Appl. Math. Phys. 37, 859 (1986)

    Article  Google Scholar 

  3. H. Ramkissoon, Z. Angew. Math. Mech. 78, 61 (1998)

    Article  MathSciNet  Google Scholar 

  4. M. Reiner, Amer. J. Math. 67, 350 (1945)

    Article  MathSciNet  Google Scholar 

  5. R.S. Rivlin, Nature 160, 611 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  6. B.R. Jaiswal, B.R. Gupta, Transp. Porous Media 107, 907 (2015)

    Article  MathSciNet  Google Scholar 

  7. B.R. Jaiswal, B.R. Gupta, Meccanica (2016) DOI:10.1007/s11012-016-0385-3

  8. H. Ramkissoon S.R. Majumadar, J. Appl. Math. Phys. 68, 155 (1988)

    Google Scholar 

  9. H. Ramkissoon, J. Maths. Sci. 10, 63 (1999)

    MathSciNet  Google Scholar 

  10. B.R. Jaiswal, B.R. Gupta, Int. J. Appl. Math. Mech. 10, 90 (2014)

    Google Scholar 

  11. T.K.V. Iyengar, D. Srinivasacharya, Int. J. Eng. Sci. 31, 115 (1993)

    Article  Google Scholar 

  12. B.R. Jaiswal, B.R. Gupta, Int. J. Fluid. Mech. Res. 42, 170 (2015)

    Article  Google Scholar 

  13. D. Palaniappan, Z. Angew. Math. Phys. 45, 832 (1994)

    Article  MathSciNet  Google Scholar 

  14. C.W. Oseen, Newer methods and results in hydrodynamics (Akademische Verlagsgesellschaft, Leipzig, 1927)

  15. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, Englewood Clifs, NJ, 1965)

  16. S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Butterworth-Heinemann, Boston, MA, USA, 1991)

  17. R.B. Jones, Theoretical methods for micro scale viscous flows (Transworld Research Network, Kerla, India, 2009) chapt. 4, pp. 61--104

  18. E. Cunningham, Proc. R. Soc. London Ser. A 83, 357 (1910)

    Article  ADS  Google Scholar 

  19. W.E. Williams, Philos. Mag. 29, 526 (1915)

    Article  Google Scholar 

  20. W.L. Haberman, R.M. Sayre, Wall effects for rigid and fluid spheres in slow motion with a moving liquid: David Taylor model, Technical Report Basin Report No. 1143 (Washington, DC, 1958)

  21. H. Ramkissoon, K. Rahaman, Acta Mech. 149, 239 (2001)

    Article  Google Scholar 

  22. H. Ramkissoon, K. Rahaman, Int. J. Eng. Sci. 41, 283 (2003)

    Article  MathSciNet  Google Scholar 

  23. H. Ramkissoon, K. Rahaman, Z. Angew. Math. Mech. 83, 773 (2003)

    Article  MathSciNet  Google Scholar 

  24. C. Maul, S. Kim, Phys. Fluids 6, 2221 (1994)

    Article  ADS  Google Scholar 

  25. C. Maul, S. Kim, J. Eng. Math. 30, 119 (1996)

    Article  MathSciNet  Google Scholar 

  26. H.J. Keh, J. Chou, Chem. Eng. Sci. 59, 407 (2004)

    Article  Google Scholar 

  27. H.J. Keh, Y.S. Lu, J. Fluids Struct. 20, 735 (2005)

    Article  ADS  Google Scholar 

  28. D. Srinivasacharya, C. R. Mec. 333, 612 (2005)

    Article  ADS  Google Scholar 

  29. E.I. Saad, Can. J. Phys. 86, 1039 (2008)

    Article  ADS  Google Scholar 

  30. E.I. Saad, Can. J. Phys. 88, 689 (2010)

    Article  ADS  Google Scholar 

  31. D. Srinivasacharya, M.K. Prasad, Adv. Theor. Appl. Mech. 5, 247 (2012)

    Google Scholar 

  32. D. Srinivasacharya, M.K. Prasad, Acta Mech. Sin. 28, 653 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  33. D. Srinivasacharya, M.K. Prasad, J. Porous Media 15, 1105 (2012)

    Article  Google Scholar 

  34. D. Srinivasacharya, M.K. Prasad, Eur. J. Mech. B/Fluids 36, 104 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  35. D. Srinivasacharya, M.K. Prasad, Arch. Mech. 65, 485 (2013)

    Google Scholar 

  36. B.R. Jaiswal, B.R. Gupta, Appl. Comput. Mech. 8, 157 (2014)

    Google Scholar 

  37. H. Ramkissoon, Z. Angew. Mech. Math. 69, 259 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Jaiswal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, B.R. Slow viscous stream over a non-Newtonian fluid sphere in an axisymmetric deformed spherical vessel. Eur. Phys. J. Plus 131, 262 (2016). https://doi.org/10.1140/epjp/i2016-16262-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16262-8

Navigation