Skip to main content
Log in

A comparative analysis on different nanofluid models for the oscillatory stagnation point flow

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this study we have presented the comparative analysis of the oscillatory stagnation point flow of nanofluids. Both the phase flow model and Buongiorno model are discussed for oscillatory stagnation point flows and a comparison between experimental model and theoretical model is presented. The resulting partial differential equations for oscillatory two-dimensional flows are simplified in a fixed frame and a moving frame of reference subject to the assumed form of solutions. The homotopy analysis method is used to solve the reduced system of coupled nonlinear ordinary differential equations. The consequences are examined through graphs and tables. It is also found that comparatively both the Boungiorno nanofluid model and phase flow model are of compatible order for a special set of parameters but generally such results do not hold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Nadeem, B. Tahir, F. Labropulu, N.S. Akbar, J. Aerospace Eng. 27, 636 (2014)

    Article  Google Scholar 

  2. R. Subba, R. Gorla, V. Dakappagari, I. Pop, Int. J. Heat Fluid Flow 14, 408 (1993)

    Article  Google Scholar 

  3. F. Labropulu, M. Chinichian, Int. J. Eng. Sci. 42, 625 (2004)

    Article  MathSciNet  Google Scholar 

  4. T. Grosan, I. Pop, C. Revnic, D.B. Ingham, Meccanica 44, 565 (2009)

    Article  MathSciNet  Google Scholar 

  5. T. Javed, A. Ghaffari, H. Ahmad, Can. J. Phys. 93, 1138 (2015)

    Article  ADS  Google Scholar 

  6. L.Y. Yian, N. Amin, I. Pop, Int. J. Heat Mass Transf. 50, 4855 (2007)

    Article  Google Scholar 

  7. T.R. Mahapatra, A.S. Gupta, Acta Mech. 152, 191 (2001)

    Article  Google Scholar 

  8. C.Y. Wang, Int. J. Eng. Sci. 46, 391 (2008)

    Article  Google Scholar 

  9. C.Y. Wang, Int. J. Nonlinear Mech. 43, 377 (2008)

    Article  ADS  Google Scholar 

  10. N. Takemitsu, Y.O. Matunobu, J. Phys. Soc. Jpn. 47, 1347 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Nazar, N. Amin, D. Filip, I. Pop, Int. J. Eng. Sci. 42, 1241 (2004)

    Article  MathSciNet  Google Scholar 

  12. F. Labropulu, X. Xu, M. Chinichian, Int. J. Math. Math. Sci. 2003, 3797 (2003)

    Article  MathSciNet  Google Scholar 

  13. Y.O. Matunobu, J. Phys. Soc. Jpn. 42, 2041 (1977)

    Article  ADS  Google Scholar 

  14. O.D. Makinde, W.A. Khan, Z.H. Khan, Int. J. Heat Mass Transf. 62, 526 (2013)

    Article  Google Scholar 

  15. P.D. Ariel, Acta Mech. 103, 31 (1994)

    Article  MathSciNet  Google Scholar 

  16. C. Sulochana, N. Sandeep, Appl. Nanosci. 6, 451 (2016)

    Article  ADS  Google Scholar 

  17. C.S.K. Raju, N. Sandeep, J. Mol. Liq. 215, 115 (2016)

    Article  Google Scholar 

  18. S.U.S. Choi, in ASME Fluids Engineering Division, Vol. 231 (1995) p. 99

  19. C. Kleinstreuer, J. Li, J. Koo, Int. J. Heat Mass Transf. 51, 5590 (2008)

    Article  Google Scholar 

  20. J. Buongiorno, J. Heat Transf. 128, 240 (2006)

    Article  Google Scholar 

  21. S. Nadeem, S. Saleem, Int. J. Heat Mass Transf. 85, 1041 (2015)

    Article  Google Scholar 

  22. S. Nadeem, R. Mehmood, N.S. Akbar, J. Comput. Theor. Nanosci. 10, 2737 (2013)

    Article  Google Scholar 

  23. N. Bachok, A. Ishak, R. Nazar, I. Pop, Physica B. Condens. Matter 405, 4914 (2010)

    Article  ADS  Google Scholar 

  24. R. Ellahi, S. Aziz, A. Zeeshan, J. Porous Media 16, 205 (2013)

    Article  Google Scholar 

  25. M. Sheikholeslami, D.D. Ganji, M.Y. Javed, R. Ellahi, J. Magn. & Magn. Mater 374, 36 (2015)

    Article  ADS  Google Scholar 

  26. Z.H. Khan, J.R. Culham, W.A. Khan, I. Pop, Int. J. Theor. Sci. 90, 53 (2015)

    Article  Google Scholar 

  27. R.U. Haq, Z.H. Khan, W.A Khan, Physica E: Low-dimensional Syst. Nanostruct. 63, 215 (2014)

    Article  ADS  Google Scholar 

  28. N.F.M. Noor, R.U. Haq, S. Nadeem, I. Hashim, Meccanica 50, 2007 (2015)

    Article  MathSciNet  Google Scholar 

  29. S. Liao, (C.R.C. Press, 2003)

  30. S.A. Shehzad, F.E. Alsaadi, S.J. Monaquel, T. Hayat, Eur. Phys. J. Plus 128, 1 (2013)

    Article  Google Scholar 

  31. M. Imtiaz, T. Hayat, M. Hussain, S.A. Shehzad, G.Q. Chen, B. Ahmad, Eur. Phys. J. Plus 129, 97 (2014)

    Article  Google Scholar 

  32. S. Nadeem, S. Saleem, Ind. J. Pure Appl. Phys. 52, 725 (2014)

    Google Scholar 

  33. R. Ellahi, App. Math. Model. 37, 1451 (2013)

    Article  MathSciNet  Google Scholar 

  34. R. Ellahi, A. Riaz, Math. Comput. Model. 52, 1783 (2010)

    Article  MathSciNet  Google Scholar 

  35. M.M. Rashidi, A.M. Siddiqui, M. Asadi, Math. Prob. Eng. 2010, 706840 (2010)

    MathSciNet  Google Scholar 

  36. S. Nadeem, S. Saleem, J. Tai. Inst. Chem. Eng. 44, 596 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saleem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem, S., Khan, A.U. & Saleem, S. A comparative analysis on different nanofluid models for the oscillatory stagnation point flow. Eur. Phys. J. Plus 131, 261 (2016). https://doi.org/10.1140/epjp/i2016-16261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16261-9

Navigation