Skip to main content
Log in

Structural and electronic properties of cyanide-coated fullerene C20@(CN)n(n=0-20): An ab initio approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Density functional theory calculations at the LDA level have been performed to investigate the geometrical structure, stabilities and electronic properties of cyanide-coated fullerene C20@(CN) n, with \(n=0-20\) in the ground state. From the binding energy, dissociation energy and second-order energy, even-number-coated fullerenes are more stable than odd-number ones. C20 has been successfully coated with electron-withdrawing group CN, achieving fullerene electron acceptors which have low-LUMO levels. The lowest LUMO value obtained for C20@(CN)12 is -5.89 eV, which is comparable with or lower than that of C60 and C60@(CN)2 fullerenes. Each of the cyanide coatings makes the fullerenes more stable with a larger HOMO-LUMO gap. Designed cyanide-coated fullerene compounds are promising and progressive to achieve a wider range of donor materials and high efficiencies in organic photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Zeng, H. Wang, B. Wang, J.G. Hou, Appl. Phys. Lett. 77, 3595 (2000)

    Article  ADS  Google Scholar 

  2. H. Park et al., Nature (London) 57, 407 (2000)

    Google Scholar 

  3. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 121104(R) (2001)

    Article  ADS  Google Scholar 

  4. R. Gutierrez, G. Fagas, G. Cuniberti, F. Grossmann, R. Schmidt, K. Richter, Phys. Rev. B 65, 113410 (2002)

    Article  ADS  Google Scholar 

  5. M. Lenes, G.J.A.H. Wetzelaer, F.B. Kooistra, S.C. Veenstra, J.C. Hummelen, Adv. Mater. 20, 2116 (2008)

    Article  Google Scholar 

  6. Y. He, H.Y. Chen, J. Hou, Y. Li, J. Am. Chem. Soc. 132, 1377 (2010)

    Article  Google Scholar 

  7. Y. Zhang, Y. Matsuo, C.Z. Li, H. Tanaka, E. Nakamura, J. Am. Chem. Soc. 133, 8086 (2011)

    Article  Google Scholar 

  8. C.Z. Li, S.C. Chien, H.L. Yip, C.C. Chueh, F.C. Chen, Y. Matsuo, E. Nakamura, A.K.Y. Jen, Chem. Commun. 47, 10082 (2011)

    Article  Google Scholar 

  9. C.Z. Li, Y. Matsuo, E. Nakamura, Tetrahedron 67, 9944 (2011)

    Article  Google Scholar 

  10. Y. Matsuo, J. Kawai, H. Inada, T. Nakagawa, H. Ota, S. Otsubo, E. Nakamura, Adv. Mater. 25, 6266 (2013)

    Article  Google Scholar 

  11. G. Ye, S. Chen, Z. Xiao, Q. Zuo, Q. Wei, L. Ding, J. Mater. Chem. 22, 22374 (2012)

    Article  Google Scholar 

  12. Y. Abe, T. Yokoyama, Y. Matsuo, Org. Electron. 14, 3306 (2013)

    Article  Google Scholar 

  13. M. Hashiguchi, N. Obata, M. Maruyama, K.S. Yeo, T. Ueno, T. Ikebe, I. Takahashi, Y. Matsuo, Org. Lett. 14, 3276 (2012)

    Article  Google Scholar 

  14. K.-M. Keshavarz, B. Knight, G. Srdanov, F. Wudl, J. Am. Chem. Soc. 117, 11371 (1995)

    Article  Google Scholar 

  15. M.R. Momeni, F.A. Shakib, Chem. Phys. Lett. 492, 137 (2010)

    Article  ADS  Google Scholar 

  16. F.A. Shakib, M.R. Momeni, Chem. Phys. Lett. 514, 321 (2011)

    Article  ADS  Google Scholar 

  17. F. Poursalemi, A. Azarsa, M.R. Momeni, F.A. Shakib, Comput. Theor. Chem. 994, 14 (2012)

    Article  Google Scholar 

  18. P. Hohenberg, W. Kohn, Phys. Rev. 136, 864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  19. W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  20. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D.J. Sánchez-Portal, Phys. Condens. Matter 14, 2745 (2002)

    Article  ADS  Google Scholar 

  21. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  22. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  23. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  24. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  25. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  26. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  27. J. Heyd, G. Scuseria, J. Chem. Phys. 121, 1187 (2004)

    Article  ADS  Google Scholar 

  28. S. Sentürk, A. Ünal, O.M. Kalfa, Comput. Theor. Chem. 1023, 46 (2013)

    Article  Google Scholar 

  29. M. Hashiguchi, N. Obata, M. Maruyama, K.S. Yeo, T. Ueno, T. Ikebe, I. Takahashi, Y. Matsuo, Org. Lett. 14, 3276 (2012)

    Article  Google Scholar 

  30. Y. Matsuo, Y. Sato, T. Niinomi, I. Soga, H. Tanaka, E. Nakamura, J. Am. Chem. Soc. 131, 16048 (2009)

    Article  Google Scholar 

  31. Y. Matsuo, J. Hatano, T. Kuwabara, K. Takahashi, Appl. Phys. Lett. 100, 063303 (2012)

    Article  ADS  Google Scholar 

  32. Y. Matsuo, Chem. Lett. 41, 754 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferhat Demiray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demiray, F., Sıdır, İ. & Gülseven Sıdır, Y. Structural and electronic properties of cyanide-coated fullerene C20@(CN)n(n=0-20): An ab initio approach. Eur. Phys. J. Plus 131, 250 (2016). https://doi.org/10.1140/epjp/i2016-16250-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16250-0

Navigation