Skip to main content
Log in

Tunable potentials and decoherence effect on polaron in nanostructures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We studied the effect of the tunable potential and decoherence of polaron in nanostructures. We have arbitrarily chosen eight potentials: the elliptical potential, square potential, triangular potential, the quadratic potential, the delta potential, the Gaussian potential, the pseudo-harmonic potential and Coulombic potential. In order to evaluate different polaronic parameters, we used the unitary transformation of LLP and the Pekar-type variational method (PTVM). This system can be considered as a two-level quantum system. We demonstrate in this work that the elliptical potential best confines the polaron and provides interesting information transfer, whereas, Gaussian, pseudo-harmonic and Coulombic potentials transfer information slowly. It is also found in this work that the Coulomb potential seems to be the most chaotic compared to the seven other used. This work confirms that the choice of a potential is crucial for the study of decoherence in nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Brunner, Y.S. Shin, T. Obata, M. Pioro-Ladrière, T. Kubo, K. Yoshida, S. Tarucha, Phys. Rev. Lett. 107, 146801 (2011)

    Article  ADS  Google Scholar 

  2. S.E. Economou, J.I. Climente, A. Badolato, A.S. Bracker, D. Gammon, M.F. Doty, Phys. Rev. B 86, 085319 (2012)

    Article  ADS  Google Scholar 

  3. C. Gang, W. Li, T. Tao, L. Hai-Ou, X. Ming, G. Guo-Ping, Chin. Phys. Lett. 29, 030306 (2012)

    Article  Google Scholar 

  4. C.Y. Hsieh, A. Rene, P. Hawrylak, Phys. Rev. B 86, 115312 (2012)

    Article  ADS  Google Scholar 

  5. L.C. Fai, Theory of Polarons Excitons, Master I’s Notes, University of Dschang, Department of physics, option: condensed matter (2014)

  6. Zhao Cuilan, CaiChunyu, Xiao Jinglin, J. Semicond. 34, 112002 (2013) DOI:10.1088/1674-4926/34/11/112002

    Article  Google Scholar 

  7. Chen, Shihua, Xiao, Jinglin, Chin. J. Electron. 18, 262 (2009)

    Google Scholar 

  8. J.P. Barnes, W.S. Warren, Phys. Rev. A 60, 4363 (1999)

    Article  ADS  Google Scholar 

  9. D. Tolkunov, V. Privman, Phys. Rev. A 69, 062309 (2004)

    Article  ADS  Google Scholar 

  10. A. Grodecka, P. Machnikowski, Phys. Rev. B 73, 125306 (2006)

    Article  ADS  Google Scholar 

  11. M. Lovric, H.G. Krojanski, D. Suter, Phys. Rev. A 75, 042305 (2007)

    Article  ADS  Google Scholar 

  12. Wang Zi Wu, Li Weiping, Yin Jiwen, Commun. Theor. Phys. 49, 311 (2008)

    Article  ADS  Google Scholar 

  13. Y. Ji-Wen, X. Jing-Lin, Y. Yi-Fu, W. Zi-Wu, Chin. Phys. B 18, 446 (2009)

    Article  ADS  Google Scholar 

  14. W.P. Li, J.W. Yin, Y.F. Yu, Z.W. Wang, J.L. Xiao, J. Low Temp. Phys. 160, 112 (2010)

    Article  ADS  Google Scholar 

  15. S.H. Chen, J.L. Xiao, Commun. Theor. Phys. 50, 1287 (2009)

    ADS  Google Scholar 

  16. W. Xiao, J.L. Xiao, Superlattice Microstruct. 52, 851 (2012)

    Article  ADS  Google Scholar 

  17. K. Lis, S. Bednarek, B. Szafran, J. Adamowski, Physica E 17, 494 (2003)

    Article  ADS  Google Scholar 

  18. A.Y. Cho, J.R. Arthur, Prog. Solid State Chem. 10, 157 (1975)

    Article  Google Scholar 

  19. J.J. Coleman, P.D. Dapkus, C.G. Kirkpatrick, M.D. Camras, N. Holonyak Jr, Appl. Phys. Lett. 40, 904 (1982)

    Article  ADS  Google Scholar 

  20. T.G. Vargo, P.M. Thompson, L.J. Gerenser, R.F. Valentini, P. Aebischer, D.J. Hook, J.A. Gardella Jr, Langmuir 8, 130 (1992)

    Article  Google Scholar 

  21. S. Baskoutas, E. Paspalakis, A.F. Terzis, J. Phys.: Condens. Matter 19, 395024 (2007)

    Google Scholar 

  22. R. Khordad, Indian J. Phys. 87, 623 (2013)

    Article  ADS  Google Scholar 

  23. B. Szafran, F.M. Peeters, S. Bednarek, J. Adamowski, Phys. Rev. 69, 125344 (2004)

    Article  ADS  Google Scholar 

  24. Xin-Jun Ma, Bin Qi, Jing-Lin Xiao., J. Low Temp. Phys. 180, 315 (2015) DOI:10.1007/s10909-015-1316-8

    Article  ADS  Google Scholar 

  25. Wei Xiao, Bin Qi, Jing-Lin Xiao., J. Low Temp. Phys. 179, 166 (2015) DOI:10.1007/s10909-015-1276-z

    Article  ADS  Google Scholar 

  26. Zhi-Xin Li, J. Low Temp. Phys. 181, 30 (2015) DOI:10.1007/s10909-015-1323-9

    Article  ADS  Google Scholar 

  27. Jia-Kui Sun, Hong-Juan Li, Jing-Lin Xiao., Mod. Phys. Lett. B 23, 3273 (2009)

    Article  ADS  Google Scholar 

  28. S. Gasiorowicz, Quantum Physics, third edition (John Wiley & Sons, 2003) chapt. 20.2

  29. A. Guo, J. Du, Superlattices Microstruct. 64, 158 (2013)

    Article  ADS  Google Scholar 

  30. A. Cetin, Phys. Lett. A 372, 3852 (2008)

    Article  ADS  Google Scholar 

  31. A.J. Fotue, S.C. Kenfack, I. Nsangou, M. Tiotsop, M.P. Tabue Djemmo, A.V. Wirngo, H. Fotsin, L.C. Fai, Am. J. Mod. Phys. 4, 138 (2015) DOI:10.11648/j.ajmp.20150403.16

    Article  Google Scholar 

  32. Wei-Ping Li, Ji-Wen Yin, Yi-Fu Yu, Jing-Lin Xiao, Zi-Wu Wang, Int. J. Theor. Phys. 48, 3339 (2009)

    Article  Google Scholar 

  33. D.J. Griffiths, Introduction to quantum mechanics (Pearson Eduction, Upper Saddle River, 2005)

  34. Z.W. Wang, J.L. Xiao, Acta Phys. Sin. 56, 678 (2007)

    Google Scholar 

  35. Yong Sun, Zhao-Hua Ding, Jing-Lin Xiao, J. Low Temp. Phys. 166, 268 (2012) DOI:10.1007/s10909-011-0453-y

    Article  ADS  Google Scholar 

  36. M.A. De Ponte, M.C. de Oliveira, M.H.Y. Moussa, Ann. Phys. 317, 72 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Fotue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotue, A.J., Fobasso, M.F.C., Kenfack, S.C. et al. Tunable potentials and decoherence effect on polaron in nanostructures. Eur. Phys. J. Plus 131, 205 (2016). https://doi.org/10.1140/epjp/i2016-16205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16205-5

Navigation