Skip to main content
Log in

Transient natural convection of cold water in a vertical channel

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The two-dimensional differential transform method (DTM) is applied to analyse the transient natural convection of cold water in a vertical channel. The cold water gives rise to a density variation with temperature that may not be linearized. The vertical channel is composed of doubly infinite parallel plates, one of which has a constant prescribed temperature and the other of which is insulated. Considering the temperature-dependent viscosity and thermal conductivity of the water, approximate analytical (series) solutions for the temperature and flow velocity are derived. The transformed functions included in the solutions are obtained through a simple recursive procedure. Numerical computation is performed for the entire range of water temperature conditions around the temperature at the density extremum point, i.e. \( 4 {}^{\circ} C\) . Numerical results illustrate the effects of the temperature-dependent properties on the transient temperature and flow velocity profiles, volumetric flow rate, and skin friction. The DTM is a powerful tool for solving nonlinear transient problems as well as steady problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Joshi, B. Gebhart, Int. J. Heat Mass Transfer 27, 1573 (1984)

    Article  Google Scholar 

  2. D.R. Moore, N.O. Weiss, J. Fluid Mech. 61, 553 (1973)

    Article  ADS  Google Scholar 

  3. C.F. Kettleborough, Int. J. Heat Mass Transfer 15, 883 (1972)

    Article  Google Scholar 

  4. H.M. Joshi, Int. Commun. Heat Mass Transfer 15, 227 (1988)

    Article  Google Scholar 

  5. M.A. Al-Nimr, M.A.I. El-Shaarawi, Heat Mass Transfer 30, 241 (1995)

    Article  ADS  Google Scholar 

  6. A.K. Singh, Defence Sci. J. 38, 35 (1988)

    Article  ADS  Google Scholar 

  7. T. Paul, B.K. Jha, A.K. Singh, Heat Mass Transfer 32, 61 (1996)

    Article  ADS  Google Scholar 

  8. A.K. Singh, H.R. Gholami, V.M. Soundalgekar, Heat Mass Transfer 31, 329 (1996)

    Article  ADS  Google Scholar 

  9. T. Paul, B.K. Jha, A.K. Singh, Int. J. Appl. Mech. Eng. 6, 913 (2001)

    Google Scholar 

  10. B.K. Jha, A.K. Singh, H.S. Takhar, Int. J. Appl. Mech. Eng. 8, 497 (2003)

    Google Scholar 

  11. A.K. Singh, T. Paul, Int. J. Appl. Mech. Eng. 11, 143 (2006)

    Google Scholar 

  12. B.K. Jha, A.O. Ajibade, J. Process Mech. Eng. 224, 247 (2010)

    Article  Google Scholar 

  13. B.K. Jha, Int. J. Appl. Mech. Eng. 6, 279 (2001)

    Google Scholar 

  14. A.O. Ajibade, B.K. Jha, Int. J. Heat Technol. 27, 85 (2009)

    Google Scholar 

  15. B.K. Jha, A.K. Samaila, A.O. Ajibade, Int. Commun. Heat Mass Transfer 38, 633 (2011)

    Article  Google Scholar 

  16. B.K. Jha, A.O. Ajibade, Commun. Nonlinear Sci. Numer. Simulat. 17, 1576 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  17. C. Mandal, S. Das, R.N. Jana, Int. J. Appl. Inf. Syst. 2, 49 (2012)

    Google Scholar 

  18. C. Bervillier, Appl. Math. Comput. 218, 10158 (2012)

    MathSciNet  Google Scholar 

  19. R. Chiba, Int. J. Thermophys. 33, 363 (2012)

    Article  ADS  Google Scholar 

  20. R. Chiba, Nonlinear Eng. 3, 215 (2014)

    Article  ADS  Google Scholar 

  21. R. Chiba, Abst. Appl. Anal. 2014, 684293 (2014)

    MathSciNet  Google Scholar 

  22. R. Chiba, Appl. Mech. Mater. 627, 145 (2014)

    Article  Google Scholar 

  23. B.L. Kuo, Appl. Math. Comput. 165, 63 (2005)

    MathSciNet  Google Scholar 

  24. H.A. Peker, G. Oturanc, arXiv:1212.1706 (2012)

  25. C.K. Chen, H.Y. Lai, C.C. Liu, Int. Commun. Heat Mass Transfer 38, 285 (2011)

    Article  Google Scholar 

  26. C.K. Chen, B.S. Chen, C.C. Liu, Int. J. Heat Mass Transfer 79, 750 (2014)

    Article  Google Scholar 

  27. M.M. Rashidi, T. Hayat, M. Keimanesh, A.A. Hendi, Int. J. Numer. Methods Heat Fluid Flow 23, 436 (2013)

    Article  MathSciNet  Google Scholar 

  28. M. Hatami, D.D. Ganji, Case Studies Thermal Eng. 2, 14 (2014)

    Article  Google Scholar 

  29. M. Hatami, J. Hatami, M. Jafaryar, G. Domairry, J. Brazil. Soc. Mech. Sci. Eng. 38, 589 (2016)

    Article  Google Scholar 

  30. J.C. Umavathi, M. Shekar, Meccanica 51, 71 (2016)

    Article  MathSciNet  Google Scholar 

  31. M.J. Jang, C.L. Chen, Y.C. Liu, Appl. Math. Comput. 121, 261 (2001)

    MathSciNet  Google Scholar 

  32. M.J. Jang, Y.L. Yeh, C.L. Chen, W.C. Yeh, Appl. Math. Comput. 216, 2339 (2010)

    MathSciNet  Google Scholar 

  33. E. Fukumori, Doctoral Dissertation, State University of New York at Buffalo (1987)

  34. E. Fukumori, A. Wake, Distributed Parameter Systems: Modelling and Simulation, edited by T. Futagami, S.G. Tzafestas, Y. Sunahara (Elsevier, North-Holland, 1989)

  35. R.C. Weast, Handbook of Chemistry and Physics, 59th edition (CRC Press, West Palm Beach, 1978)

  36. A. Kurnaz, G. Oturanc, M.E. Kiris, Int. J. Comput. Math. 82, 369 (2005)

    Article  MathSciNet  Google Scholar 

  37. Y. Khan, Z. Svoboda, Z. Smarda, Adv. Diff. Eq. 2012, 174 (2012)

    Article  MathSciNet  Google Scholar 

  38. F. Mirzaee, Appl. Math. Sci. 5, 3465 (2011)

    MathSciNet  Google Scholar 

  39. N. Patil, A. Khambayat, Res. J. Math. Stat. Sci. 2, 4 (2014)

    Google Scholar 

  40. B. Kundu, K.S. Lee, Energy Conv. Manag. 110, 469 (2014)

    Article  Google Scholar 

  41. I.Ç. Süngü, H. Demir, Appl. Math. 3, 246 (2012)

    Article  MathSciNet  Google Scholar 

  42. Z.M. Odibat, C. Bertelle, M.A. Aziz-Alaoui, G.H.E. Duchamp, Comput. Math. Appl. 59, 1462 (2010)

    Article  MathSciNet  Google Scholar 

  43. H. Saberi Nik, F. Soleymani, Alexandria Eng. J. 52, 543 (2013)

    Article  Google Scholar 

  44. M.M. Rashidi, N. Laraqi, S.M. Sadri, Int. J. Thermal Sci. 49, 2405 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoichi Chiba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiba, R. Transient natural convection of cold water in a vertical channel. Eur. Phys. J. Plus 131, 135 (2016). https://doi.org/10.1140/epjp/i2016-16135-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16135-2

Keywords

Navigation