Skip to main content
Log in

Electromagnetic metamaterial-inspired band gap and perfect transmission in semiconductor and graphene-based electronic and photonic structures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this article, at first we propose a unified and compact classification of single negative electromagnetic metamaterial-based perfect transmission unit cells. The classes are named as: type-A, -B and -C unit cells. Then based on the classification, we have extended these ideas in semiconductor and graphene regimes. For type-A: Based on the idea of electromagnetic Spatial Average Single Negative bandgap, novel bandgap structures have been proposed for electron transmission in semiconductor heterostructures. For type-B: with dielectric-graphene-dielectric structure, almost all angle transparency is achieved for both polarizations of electromagnetic wave in the terahertz frequency range instead of the conventional transparency in the microwave frequency range. Finally the application of the gated dielectric-graphene-dielectric has been demonstrated for the modulation and switching purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Zhou, W. Wen, C.T. Chan, P. Sheng, Phys. Rev. Lett. 94, 243905 (2005)

    Article  ADS  Google Scholar 

  2. T. Feng, Y. Li, H. Jiang, Y. Sun, L. He, H. Li, Y. Zhang, Y. Shi, H. Chen, Phys. Rev. E 79, 026601 (2009)

    Article  ADS  Google Scholar 

  3. G. Castaldi, I. Gallina, V. Galdi, A. Alù, N. Engheta, Phys. Rev. B 83, 081105(R) (2011)

    Article  ADS  Google Scholar 

  4. E. Cojocaru, Prog. Electromagn. Res. 113, 227 (2011)

    Article  Google Scholar 

  5. A. Alu, N. Engheta, IEEE Trans. Antennas Propag. 51, 2558 (2003)

    Article  ADS  Google Scholar 

  6. M.G. Silveirinha, N. Engheta, Phys. Rev. B 86, 245302 (2012)

    Article  ADS  Google Scholar 

  7. Hrebikova, L. Jelinek, J. Voves, J.D. Baena, Photonics Nanostruct. - Fundam. Appl. 12, 9 (2014)

    Article  ADS  Google Scholar 

  8. M.G. Silveirinha, N. Engheta, Phys. Rev. B 86, 161104 (2012)

    Article  ADS  Google Scholar 

  9. D.E. Fernandes, N. Engheta, M.G. Silveirinha, Phys. Rev. B 90, 041406 (2014)

    Article  ADS  Google Scholar 

  10. M.G. Silveirinha, N. Engheta, Phys. Rev. Lett. 110, 213902 (2013)

    Article  ADS  Google Scholar 

  11. Ayed Al Sayem, Arif Shahriar, M.R.C. Mahdy, Md Saifur Rahman, Control of reflection through epsilon near zero graphene based anisotropic metamaterial (ICECE, 2014) pp. 812--815

  12. A.A. Sayem, M.R.C. Mahdy, I. Jahangir, M.S. Rahman, Ultrathin Ultra-broadband Electro-Absorption Modulator based on Few layer Graphene based Metamaterial, arXiv:1504.03419 (2015)

  13. K.A. Ritter, W.L. Joseph, Nat. Mater. 8, 235 (2009)

    Article  ADS  Google Scholar 

  14. Nilsson, A.C. Neto, F. Guinea, N.M.R. Peres, Phys. Rev. Lett. 97, 266801 (2006)

    Article  ADS  Google Scholar 

  15. A. Shahriar, M.R.C. Mahdy, G.D. Al-Quaderi, M.J. Shawon, A. Matin, On the Relation between Perfect Tunneling and Band Gaps for SNG Metamaterial Structures, arXiv:1308.3260 (2012)

  16. S.J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2014)

  17. L. Jelinek, J.D. Baena, J. Voves, R. Marques, New J. Phys. 13, 083011 (2011)

    Article  ADS  Google Scholar 

  18. Y. Weng, Z.G. Wang, H. Chen, Phys. Rev. E 75, 046601 (2007)

    Article  ADS  Google Scholar 

  19. S. Zouhdi, A.V. Dorofeenko, A.M. Merzlikin, A.P. Vinogradov, Phys. Rev. B 75, 035125 (2007)

    Article  ADS  Google Scholar 

  20. Y. Xiang, X. Dai, S. Wen, Z. Tang, D. Fan, Appl. Phys. B 103, 897 (2011)

    Article  ADS  Google Scholar 

  21. Yuanjiang Xiang, Xiaoyu Dai, Jun Guo, Han Zhang, Shuangchun Wen, Dingyuan Tang, Sci. Rep. 4, 5483 (2014)

    Google Scholar 

  22. K.V. Sreekanth, A. De Luca, G. Strangi, Appl. Phys. Lett. 103, 023107 (2013)

    Article  ADS  Google Scholar 

  23. K.V. Sreekanth, A.D. Luca, G. Strangi, Appl. Phys. Lett. 103, 023107 (2013)

    Article  ADS  Google Scholar 

  24. I.V. Iorsh, I.S. Mukhin, I.V. Shadrivov, P.A. Belov, Y.S. Kivshar, Phys. Rev. B 87, 075416 (2013)

    Article  ADS  Google Scholar 

  25. M. Othman, C. Guclu, F. Capolino, Opt. Express 21, 7614 (2013)

    Article  ADS  Google Scholar 

  26. P. A.-González, A.Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L.E. Hueso, R. Hillenbrand, Science 344, 1369 (2014)

    Article  ADS  Google Scholar 

  27. M. Amin, M. Farhat, H. Bağci, Opt. Express 21, 29938 (2013)

    Article  ADS  Google Scholar 

  28. M. Amin, M. Farhat, H. Bağci, Sci. Rep. 3, 2105 (2013)

    ADS  Google Scholar 

  29. M. Tamagnone, A. Fallahi, J.R. Mosig, J.P. Carrier, Nat. Photon. 8, 556 (2014)

    Article  ADS  Google Scholar 

  30. N. Chamanara, D. Sounas, T. Szkopek, C. Caloz, Opt. Express 21, 25356 (2013)

    Article  ADS  Google Scholar 

  31. J.S. Gómez-Díaz, J. Perruisseau-Carrier, Opt. Express 21, 15490 (2013)

    Article  ADS  Google Scholar 

  32. SeungHoon Lee, Muhan Choi, Teun-Teun Kim, Seungwoo Lee, Ming Liu, Xiaobo Yin, Hong Kyw Choi, Seung S. Lee, Choon-Gi Choi, Sung-Yool Choi, Xiang Zhang, Bumki Min, Nat. Mater. 11, 936 (2012)

    Article  ADS  Google Scholar 

  33. Tian Fang, Aniruddha Konar, Huili Xing, Debdeep Jena, Appl. Phys. Lett. 91, 092109 (2007)

    Article  Google Scholar 

  34. Ayed Al Sayem, M.R.C. Mahdy, Md Saifur Rahman, J. Optics 18, 015101 (2015)

    Article  Google Scholar 

  35. Md Jubayer Shawon, Ghafour Amouzad Mahdiraji, Md Munir Hasan, Barmak Honarvar Shakibaei, Shee Yu Gang, Mahdy Rahman Chowdhury Mahdy, Faisal Rafiq Mahamd Adikan, IEEE Photonics J. 7, 4600812 (2015) DOI:10.1109/JPHOT.2015.2496399

    Google Scholar 

  36. A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, J. Pawluczyk, J. Rutkowski, J. Piotrowski, A. Rogalski, Infrared Phys. Technol. 49, 173 (2007)

    Article  ADS  Google Scholar 

  37. I. Jahangir, A. Wilson, A.K. Singh, N. Sbrockey, E. Coleman, G.S. Tompa, G. Koley, Graphene/InN and Graphene/MoS2 heterojunctions: Characterization and sensing applications , in IEEE 14th International Conference on Nanotechnology (IEEE-NANO), 2014 (IEEE, 2014) pp. 1000--1003

  38. A.K. Singh, M.A. Uddin, J.T. Tolson, H. Maire-Afeli, N. Sbrockey, G.S. Tompa, M.G. Spencer, T. Vogt, T.S. Sudarshan, G. Koley, Appl. Phys. Lett. 102, 043101 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. C. Mahdy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdy, M.R.C., Al Sayem, A., Shahriar, A. et al. Electromagnetic metamaterial-inspired band gap and perfect transmission in semiconductor and graphene-based electronic and photonic structures. Eur. Phys. J. Plus 131, 92 (2016). https://doi.org/10.1140/epjp/i2016-16092-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16092-8

Keywords

Navigation