Skip to main content
Log in

Numerical analysis of natural convection for non-Newtonian fluid conveying nanoparticles between two vertical parallel plates

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, natural convection of non-Newtonian bio-nanofluids flow between two vertical flat plates is investigated numerically. Sodium Alginate (SA) and Sodium Carboxymethyl Cellulose (SCMC) are considered as the base non-Newtonian fluid, and nanoparticles such as Titania ( TiO2 and Alumina ( Al2O3 were added to them. The effective thermal conductivity and viscosity of nanofluids are calculated through Maxwell-Garnetts (MG) and Brinkman models, respectively. A fourth-order Runge-Kutta numerical method (NUM) and three Weighted Residual Methods (WRMs), Collocation (CM), Galerkin (GM) and Least-Square Method (LSM) and Finite-Element Method (FEM), are used to solve the present problem. The influence of some physical parameters such as nanofluid volume friction on non-dimensional velocity and temperature profiles are discussed. The results show that SCMC- TiO2 has higher velocity and temperature values than other nanofluid structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. RW. Bruce, TY. Na, Natural convection flow of Powell-Eyring fluids between two vertical flat plates, (ASME, New York, 1967) 67-WA/HT-25

  2. Z. Ziabakhsh, G. Domairry, Commun. Nonlinear Sci. Numer. Simulat. 14, 1868 (2009)

    Article  ADS  Google Scholar 

  3. S.S. Pawar, Vivek K. Sunnapwar, Experimental Thermal and Fluid Science 44, 792 (2013)

    Article  Google Scholar 

  4. G.H. Tang, Y.B. Lu, S.X. Zhang, F.F. Wang, W.Q. Tao, J. Non-Newton. Fluid Mech. 173--174, 21 (2012)

    Article  Google Scholar 

  5. M. Yoshino, Y. Hotta, T. Hirozane, M. Endo, J. Non-Newton. Fluid Mech. 147, 69 (2007)

    Article  MATH  Google Scholar 

  6. H. Xu, S.J. Liao, J. Non-Newton. Fluid Mech. 129, 46 (2005)

    Article  MATH  Google Scholar 

  7. M. Hojjat, S.Gh. Etemad, R. Bagheri, J. Thibault, Int. J. Heat Mass Transfer 54, 1017 (2011)

    Article  MATH  Google Scholar 

  8. R.H. Stern, H. Rasmussen, Comput. Boil. Med. 26, 255 (1996)

    Article  Google Scholar 

  9. B. Vaferi, V. Salimi, D. Dehghan Baniani, A. Jahanmiri, S. Khedri, J. Petrol. Sci. Eng. 98-99, 156 (2012) DOI:10.1016/j.petrol.2012.04.023

    Article  Google Scholar 

  10. F.A. Hendi, A.M. Albugami, J. King Saud Uni. (Sci.) 22, 37 (2010)

    Article  Google Scholar 

  11. M.N. Bouaziz, A. Aziz, Energy Convers. Manag. 51, 76 (2010)

    Article  Google Scholar 

  12. A. Aziz, M.N. Bouaziz, Energy Convers. Manag. 52, 2876 (2011)

    Article  Google Scholar 

  13. G. Shaoqin, D. Huoyuan, Act. Math. Sci. B 28, 675 (2008)

    Article  MATH  Google Scholar 

  14. M. Hatami, A. Hasanpour, D.D. Ganji, Energy Convers. Manag. 74, 9 (2013)

    Article  Google Scholar 

  15. M. Sheikholeslami, M. Hatami, D.D. Ganji, Powder Technol. 246, 327 (2013)

    Article  Google Scholar 

  16. R. Xia, X. Tian, Y. Shen, Acta Mech. Solida Sin. 27, 300 (2014)

    Article  Google Scholar 

  17. J.D. Templeton, S.A. Ghoreishi-Madiseh, F. Hassani, M.J. Al-Khawaja, Energy 70, 366 (2014)

    Article  Google Scholar 

  18. M. Turkyilmazoglu, Eur. J. Mech., B/Fluids 53, 272 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  19. KR. Rajagopal, TY. N., Acta Mech. 54, 239 (1985)

    Article  MATH  Google Scholar 

  20. J.C. Maxwell, A Treatise on Electricity and Magnetism, second edition (Oxford University Press, Cambridge, 1904) pp. 435-441

  21. M. Hatami, D.D. Ganji, J. Molec. Liquids 188, 155 (2013)

    Article  Google Scholar 

  22. M. Hatami, D.D. Ganji, Energy Convers. Manag. 76, 185 (2013)

    Article  Google Scholar 

  23. M. Hatami, D.D. Ganji, Ceram. Inter. 40, 6765 (2014)

    Article  Google Scholar 

  24. M. Hatami, D.D. Ganji, Int. J. Refrig. 40, 140 (2014)

    Article  Google Scholar 

  25. M. Hatami, D.D. Ganji, Energy Convers. Manag. 78, 347 (2014)

    Article  Google Scholar 

  26. M. Hatami, R. Nouri, D.D. Ganji, J. Molec. Liquids 187, 294 (2013)

    Article  Google Scholar 

  27. M. Hatami, D.D. Ganji, J. Molec. Liquids 190, 159 (2014)

    Article  Google Scholar 

  28. M. Hatami, G. Domairry, Powder Technol. 253, 481 (2014)

    Article  Google Scholar 

  29. M. Hatami, J. Hatami, D.D. Ganji, Comp. Methods Prog. Biomed. 113, 632 (2014)

    Article  Google Scholar 

  30. FlexPDE Method (FPDEM) website, http://www.pdesolutions.com

  31. M. Turkyilmazoglu, J. Heat Transfer 137, 024501 (2015)

    Article  Google Scholar 

  32. M. Turkyilmazoglu, Int. J. Heat Mass Transfer 85, 609 (2015)

    Article  Google Scholar 

  33. M. Turkyilmazoglu, I. Pop, Int. J. Heat Mass Transfer 55, 7635 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. R. Sahebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahebi, S.A.R., Pourziaei, H., Feizi, A.R. et al. Numerical analysis of natural convection for non-Newtonian fluid conveying nanoparticles between two vertical parallel plates. Eur. Phys. J. Plus 130, 238 (2015). https://doi.org/10.1140/epjp/i2015-15238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15238-6

Keywords

Navigation