Skip to main content
Log in

Relativistic quantum speed limit time in dephasing noise

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The behavior of quantum speed limit time (QSLT) for a single free spin-1/2 particle described by Gaussian wavepackets in the framework of relativity under dephasing noise is investigated. The dephasing noise acts only on the spin degrees of freedom of the spin-1/2 particle. In particular, the effects of initial time parameter, rapidity, average momentum and the size of the wavepackets in the presence of the dephasing noise on the dynamics of evolution process are studied. In general, the effects of relativity monotonically decrease the QSLT in time. In the range of large values of average momentum, critical values of both the rapidity and the size of the wavepackets exist at which the QSLT has its minimum value. In the range of small values of the average momentum, the QSLT monotonically decreases with both rapidity and the size of the wavepackets. The decrease of QSLT in a particular range of rapidity and with other relative parameters may be of great interest in employing fast quantum communication and quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bouwmeester, A. Ekert, A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, Berlin, 2000) and R.M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (University of Chicago Press, Chicago, 1994).

  2. A. Peres, D.R. Terno, Rev. Mod. Phys. 76, 93 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  3. C. Soo, C.C.Y. Lin, Int. J. Quantum Inf. 02, 183 (2004).

    Article  ADS  Google Scholar 

  4. P.M. Alsing, I. Fuentes-Schuller, R.B. Mann, T.E. Tessier, Phys. Rev. A 74, 032326 (2006).

    Article  ADS  Google Scholar 

  5. I. Fuentes-Schuller, R.B. Mann, Phys. Rev. Lett. 95, 120404 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Khan, M.K. Khan, J. Phys. A: Math. Theor. 44, 045305 (2011).

    Article  ADS  Google Scholar 

  7. D.E. Bruschi, J. Louko, E. Martin-Martinez, A. Dragan, I. Fuentes, Phys. Rev. A 82, 042332 (2010).

    Article  ADS  Google Scholar 

  8. S. Khan, Ann. Phys. 348, 270 (2014).

    Article  ADS  Google Scholar 

  9. S. Khan, M.A. Khan, M.K. Khan, Commun. Theor. Phys. 61, 281 (2014).

    Article  Google Scholar 

  10. V. Giovannetti, S. Lloyd, L. Maccone, Nat. Photon. 5, 222 (2011).

    Article  ADS  Google Scholar 

  11. J.D. Bekenstein, Phys. Rev. Lett. 46, 623 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Lloyd, Phys. Rev. Lett. 88, 237901 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, G.E. Santoro, Phys. Rev. Lett. 103, 240501 (2009).

    Article  ADS  Google Scholar 

  14. L. Mandelstam, I. Tamm, J. Phys. (USSR) 9, 249 (1945).

    MathSciNet  Google Scholar 

  15. L. Vaidman, Am. J. Phys. 60, 182 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  16. N. Margolus, L.B. Levitin, Phys. D 120, 188 (1998).

    Article  Google Scholar 

  17. L.B. Levitin, T. Toffoli, Phys. Rev. Lett. 103, 160502 (2009).

    Article  ADS  Google Scholar 

  18. V. Giovannetti, S. Lloyd, L. Maccone, Phys. Rev. A 67, 052109 (2003).

    Article  ADS  Google Scholar 

  19. P. Jones, P. Kok, Phys. Rev. A 82, 022107 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Deffner, E. Lutz, J. Phys. A: Math. Theor. 46, 335302 (2013).

    Article  MathSciNet  Google Scholar 

  21. M.M. Taddei, B.M. Escher, L. Davidovich, R.L. de Matos Filho, Phys. Rev. Lett. 110, 050402 (2013).

    Article  ADS  Google Scholar 

  22. A. del Campo, I.L. Egusquiza, M.B. Plenio, S.F. Huelga, Phys. Rev. Lett. 110, 050403 (2013).

    Article  Google Scholar 

  23. S. Deffner, E. Lutz, Phys. Rev. Lett. 111, 010402 (2013).

    Article  ADS  Google Scholar 

  24. Y.J. Zhang, W. Han, Y.J. Xia, J.P. Cao, H. Fan, Sci. Rep. 4, 4890 (2014).

    ADS  Google Scholar 

  25. C. Addis, G. Brebner, P. Haikka, S. Maniscalco, Phys. Rev. A 89, 024101 (2014).

    Article  ADS  Google Scholar 

  26. F.F. Fanchini, G. Karpat, L.K. Castelano, D.Z. Rossatto, Phys. Rev. A 88, 012105 (2013).

    Article  ADS  Google Scholar 

  27. D. Crow, R. Joynt, Phys. Rev. A 89, 042123 (2014).

    Article  ADS  Google Scholar 

  28. N.N. Bogolubov, A.A. Logunov, I.T. Todorov, Introduction to Axiomatic Quantum Field Theory (W. A. Benjamin, Reading, MA, 1975).

  29. A. Peres, P.F. Scudo, D.R. Terno, Phys. Rev. Lett. 88, 23 (2002).

    Article  MathSciNet  Google Scholar 

  30. F.R. Halpern, Special Relativity and Quantum Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1968).

  31. S. Weinberg, The Quantum Theory of Fields, Vol. I (Cambridge University Press, Cambridge, 1996).

  32. A.G.S. Landulfo, A.C. Torres, Phys. Rev. A 87, 042339 (2013).

    Article  ADS  Google Scholar 

  33. B. Bylicka, D. Chruscinski, S. Maniscalco, Sci. Rep. 4, 5720 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Khan, N.A. Relativistic quantum speed limit time in dephasing noise. Eur. Phys. J. Plus 130, 216 (2015). https://doi.org/10.1140/epjp/i2015-15216-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15216-0

Keywords

Navigation