Skip to main content

Advertisement

Log in

Size dependence of the thermal decomposition kinetics of nano- CaC2O4: A theoretical and experimental study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the processes of preparation and application of nanomaterials, the thermal decomposition of nanoparticles is often involved. An improved general theory of thermal decomposition kinetics of nanoparticles, developed over the past 10 years, was presented in this paper where the relations between reaction kinetic parameters and particle size were derived. Experimentally, the thermal decomposition kinetics of nano-sized calcium oxalate (nano- CaC2O4 with different sizes was studied by means of Thermogravimetry Analysis (TGA) at different heating rates. The values of the apparent activation energy and the logarithm of pre-exponential factor were calculated using the equation of Iterative Kissinger-Akahira-Sunose (IKAS) and its deformations. The influence regularities of particle size on the apparent activation energy and the pre-exponential factor were summarized, which are consistent with the thermal decomposition kinetics theory of nanoparticles. Based on the theory, the method of obtaining the surface thermodynamic properties by the determination of kinetic parameters was presented. Theoretical and experimental results show that the particle size, through the effect on the surface thermodynamic properties, has notable effect on the thermal decomposition kinetics. With the particle size decreasing, the partial molar surface enthalpy and the partial molar surface entropy increases, leading to the decrease of the apparent activation energy and the pre-exponential factor, respectively. Furthermore, the apparent activation energy, the pre-exponential factor, the partial molar surface enthalpy and the partial molar surface entropy are linearly related to the reciprocal of particle diameter, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lv, D.D. Sang, H.D. Li, X.B. Du, D.M. Li, G.T. Zou, Nanoscale Res. Lett. 5, 620 (2010).

    Article  ADS  Google Scholar 

  2. L. Nicole, C. Laberty, L. Rozes, C. Sanchez, Nanoscale 6, 6267 (2014).

    Article  ADS  Google Scholar 

  3. I. Polyakov, E. Epifanovsky, B. Grigorenko, A.I. Krylov, A. Nemukhin, J. Chem. Theory Comp. 5, 1907 (2009).

    Article  Google Scholar 

  4. V. Aishwarya. K.S. Suganthi. K.S. Rajan, J. Nanopart. Res. 15, 1774/1 (2013).

    Article  Google Scholar 

  5. D.X. Li, H.Y. Shi, J. Deng, Y.Z. Xu, J. Zhejiang Univ. Sci. 4, 363 (2003).

    Article  Google Scholar 

  6. R. Liu, W.F. Yu, T.L. Zhang, L. Yang, Z.N. Zhou, Phys. Chem. Chem. Phys. 15, 7889 (2013).

    Article  Google Scholar 

  7. N.N. Nassar, A. Hassan, P. Pereira-Almao, J. Therm. Anal. Calorim. 110, 1327 (2012).

    Article  Google Scholar 

  8. M. Fathollahi, B. Mohammadi, J. Mohammadi, Fuel 104, 95 (2013).

    Article  Google Scholar 

  9. Z.Y. Li, K. Yu, J. Liu, Y.W. Tian, Y.C. Zhai, Curr. Nanosci. 8, 97 (2012).

    Article  Google Scholar 

  10. L. Zhou, A. Rai, N. Piekiel, X.F. Ma, J. Phys. Chem. C 112, 16209 (2008).

    Article  Google Scholar 

  11. X.D. Chen, W.A. Luo, Z.F. Liao, Nanosci. 11, 311 (2006).

    Google Scholar 

  12. J.H. Hin, D.H. Bae, Mater. Chem. Phys. 143, 1423 (2014).

    Article  Google Scholar 

  13. Y.P. Lu, Q.F. Liu, Y.D. Zhang, New Chem. Mater. 37, 47 (2009).

    Google Scholar 

  14. Z.X. Cui, Y.Q. Xue, L.B. Xiao, T.T. Wang, J. Comput. Theor. Nanosci. 10, 569 (2013).

    Article  Google Scholar 

  15. Y.Q. Xue, J.P. Du, P.D. Wang, Z.Z. Wang, Acta Phys. Chim. Sin. 21, 758 (2005).

    Google Scholar 

  16. Y.Q. Xue, H. Zhao, J.P. Du, Chinese J. Inorg. Chem. 22, 1952 (2006).

    Google Scholar 

  17. Y.Q. Xue, X.P. Wang, Z.X. Cui, Prog. React. Kinet. Mec. 36, 329 (2011).

    Article  Google Scholar 

  18. Y.Q. Xue, X.Y. Xia, Z.X. Cui, J.Q. Shi, J. Comput. Theor. Nanosci. 11, 1 (2014).

    Article  ADS  Google Scholar 

  19. International Union of Pure and Applied Chemistry, Physical and chemical symbols, terminology and unit committee. Quantities, Units and Symbols in Physical Chemistry (Science and Technology Documentation Press, 1991) pp. 52, 56--57.

  20. P. Atkins, J. Paula, Atkins’ Physical Chemistry (Higher Education Press, Beijing, 2006) p. 961.

  21. G.C. Fan, L. Sun, Z.Y. Huang, J.Y. Jiang, Y.F. Li, Mater. Lett. 65, 2783 (2011).

    Article  Google Scholar 

  22. Y.Q. Xue, X.C.Yang, Z.X. Cui, W.P. Lai, J. Phys. Chem. B 115, 109 (2011).

    Article  Google Scholar 

  23. W. Abdel Wareth, X. Xu, J. Aerosp. Power 27, 1179 (2012).

    Google Scholar 

  24. W.N. Zhang, Y.H. Yuan, L.Q. Li, D.H. Chen, Acta Phys. Chim. Sin. 20, 33 (2004).

    Google Scholar 

  25. Z. Gao, M. Nakada, I. Amasaki, Thermochim. Acta 369, 137 (2001).

    Article  Google Scholar 

  26. W.J. Tang, D.H. Chen, Acta Phys. Chim. Sin. 23, 605 (2007).

    Google Scholar 

  27. W.J. Tang, D.H. Chen, M. Wu, Zhongnan Minzu Daxue Xuebao, Ziran Kexue Ban 26, 16 (2007).

    Google Scholar 

  28. J.X. Liu, Q.Q. Zheng, X.Y. Gao, Acta Chim. Sinica 41, 169 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., Cui, Z. & Xue, Y. Size dependence of the thermal decomposition kinetics of nano- CaC2O4: A theoretical and experimental study. Eur. Phys. J. Plus 130, 212 (2015). https://doi.org/10.1140/epjp/i2015-15212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15212-4

Keywords

Navigation