Skip to main content
Log in

Invariant analysis and conservation laws for the time fractional foam drainage equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the Lie group analysis method is applied to derive Lie point symmetries of the time fractional foam drainage equation with the Riemann-Liouville derivative. Symmetry reductions are constructed and conservation laws are obtained by using the Lie symmetries of the equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000).

  2. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Amsterdam, The Netherlands, 2006).

  3. J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in fractional calculus: Theoretical developments and applications in physics and engineering (Springer, Dordrecht, Netherlands, 2007).

  4. P.J. Olver, Application of Lie Group to Differential Equation (Springer, New York, 1986).

  5. G.W. Bluman, S. Kumei, Symmetries and Differential Equations (Springer, New York, 1989).

  6. N.H. Ibragimov, Lie Group Analysis of Differential Equations-Symmetries, Exact Solutions and Conservation Laws (CRC, Florida, 1994).

  7. Y. Chen, Z.Z. Dong, Nonlinear Anal. 71, 810 (2009).

    Article  MathSciNet  Google Scholar 

  8. X.R. Hu, Y. Chen, Appl. Math. Comput. 215, 1141 (2009).

    MathSciNet  Google Scholar 

  9. R.K. Gazizov, A.A. Kasatkin, S.Y. Lukashchuk, Phys. Scr. T136, 014016 (2009).

    Article  ADS  Google Scholar 

  10. R. Sahadevan, T. Bakkyaraj, J. Math. Anal. Appl. 393, 341 (2012).

    Article  MathSciNet  Google Scholar 

  11. G.W. Wang, T.Z. Xu, Nonlinear Dyn. 76, 571 (2014).

    Article  Google Scholar 

  12. Q. Huang, R. Zhdanov, Phys. A 409, 110 (2014).

    Article  MathSciNet  Google Scholar 

  13. M.S. Hashemi, Phys. A 417, 141 (2015).

    Article  MathSciNet  Google Scholar 

  14. S.Y. Lukashchuk, Nonlinear Dyn. 80, 791 (2015).

    Article  MathSciNet  Google Scholar 

  15. N.H. Ibragimov, J. Math. Anal. Appl. 333, 311 (2007).

    Article  MathSciNet  Google Scholar 

  16. G. Verbist, D. Weaire, Europhys. Lett. 26, 631 (1994).

    Article  ADS  Google Scholar 

  17. G. Verbist et al., J. Phys. Condens. Mat. 8, 3715 (1996).

    Article  ADS  Google Scholar 

  18. S.J. Cox et al., Proc. R. Soc. A Math. Phys. 456, 2441 (2002).

    Article  Google Scholar 

  19. R.K. Prud’homme, S.A. Khan (Editors), Foams. Theory, Measurements, and Applications (Marcel Dekker, Inc., New York, Basel, Hong Kong, 1996).

  20. D.L. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, Oxford, 2000).

  21. M.A. Helal, M.S. Mehanna, Appl. Math. Comput. 190, 599 (2007).

    MathSciNet  Google Scholar 

  22. F. Khani et al., Nonlinear Anal. Real 10, 1904 (2009).

    Article  MathSciNet  Google Scholar 

  23. M.T. Darvishi, F. Khani, Comput. Math. Appl. 58, 360 (2009).

    Article  MathSciNet  Google Scholar 

  24. E. Yaşar, T. Özer, Int. J. Nonlinear Mech. 46, 357 (2011).

    Article  ADS  Google Scholar 

  25. K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations (Wiley, New York, 1993).

  26. I. Podlubny, Fractional differential equations (Academic Press, San Diego, CA, 1999).

  27. D. Levi, P. Winternitz, J. Phys. A 22, 2915 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  28. P.A. Clarkson, M.D. Kruskal, J. Math. Phys. 30, 2201 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  29. S.Y. Lou, C. Hong, J. Phys. A 38, 129 (2005).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjuan Rui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rui, W., Zhang, X. Invariant analysis and conservation laws for the time fractional foam drainage equation. Eur. Phys. J. Plus 130, 192 (2015). https://doi.org/10.1140/epjp/i2015-15192-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15192-3

Keywords

Navigation