Skip to main content
Log in

Natural convection in a horizontal cylindrical annulus filled with a porous medium saturated by a nanofluid using Tiwari and Das’ nanofluid model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper deals with a numerical study of natural convection flow and heat transfer inside a concentric horizontal annulus filled with a porous medium saturated by a cuprum (Cu)-water nanofluid. The inner and outer cylinders are kept at different constant temperatures. First, the governing partial differential equations in dimensional formulation in a polar coordinate system for the physical domain are transformed in dimensionless form in terms of stream function-temperature formulation. These equations along with the corresponding boundary conditions were solved numerically by the finite difference method. Particular efforts have been focused on the effects of the Rayleigh number, porosity of the porous medium, solid volume fraction parameter of nanoparticles, annulus radius ratio, and the solid matrix of the porous medium (glass balls and aluminum foam) on the local and average Nusselt numbers, streamlines and isotherms. It is found that a very good agreement exists between the present results and those from the open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C p :

specific heat at a constant pressure

g :

gravitational acceleration

H(φ):

special function

K :

permeability of the porous medium

k :

thermal conductivity

Nu :

local Nusselt number along the internal cylindrical surface

\(\overline {Nu}\) :

average Nusselt number at the internal cylindrical surface

r :

dimensionless radial coordinate

\(\bar r\) :

dimensional radial coordinate

\(\bar r_1\) :

radius of internal cylinder

\(\bar r_2\) :

radius of external cylinder

R :

annulus radius ratio

Ra :

Rayleigh number for the porous medium

T :

dimensional temperature

T c :

temperature of cold external cylinder

Th :

temperature of hot internal cylinder

u, v :

dimensionless Darcian velocity components

\(\bar u,\bar v\) :

dimensional Darcian velocity components

α :

thermal diffusivity

β :

thermal expansion coefficient

γ :

azimuthal coordinate

Δr :

step along r-coordinate

Δγ :

step along γ-coordinate

ε :

porosity of the porous medium

θ :

dimensionless temperature

μ :

dynamic viscosity

ρ :

density

ρC p :

heat capacitance

ρβ :

buoyancy coefficient

φ :

uniform concentration of the nanoparticles

ψ :

dimensionless stream function

c :

cold

f :

fluid

h :

hot

m :

clear fluid saturated with porous medium

max :

maximum value

min :

minimum value

mnf :

nanofluid saturated with porous medium

nf :

nanofluid

p :

(nano) particle

s :

solid matrix of the porous medium

References

  1. P. Cheng, W.J. Minkowycz, J. Geophys. Res. 82, 2040 (1977).

    Article  ADS  Google Scholar 

  2. D.A. Nield, A. Bejan, Convection in Porous Media, 4th edition (Springer, New York, 2013).

  3. I. Pop, D.B. Ingham, Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media (Pergamon, Oxford, 2001).

  4. D.B. Ingham, I. Pop (Editors) Transport Phenomena in Porous Media, Vol. III (Elsevier, Oxford, 2005).

  5. K. Vafai (Editor), Handbook of Porous Media, 2nd edition (Taylor & Francis, New York, 2005).

  6. K. Vafai, Porous Media: Applications in Biological Systems and Biotechnology (CRC Press, Tokyo, 2010).

  7. A. Nakayama, PC-Aided Numerical Heat Transfer and Convective Flow (CRC Press, Tokyo, 1995).

  8. P. Vadasz, Emerging Topics in Heat and Mass Transfer in Porous Media (Springer, New York, 2008).

  9. M.J.S. de Lemos, Turbulence in Porous Media: Modeling and Applications (Elsevier, Oxford, 2006).

  10. J.D. Jansen, A Systems Description of Flow Through Porous Media (Springer, New York, 2013).

  11. A. Bagchi, F.A. Kulacki, Natural Convection in Superposed Fluid-Porous Layers (Springer, New York, 2014).

  12. S.U.S. Choi, Enhancing Thermal Conductivity of Fluids with Nanoparticles, in Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, Vol. 66 (ASME, FED 231/MD, 1995) pp. 99--105.

  13. K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transfer 46, 3639 (2003).

    Article  MATH  Google Scholar 

  14. R.K. Tiwari, M.K. Das, Int. J. Heat Mass Transfer 50, 2002 (2007).

    Article  MATH  Google Scholar 

  15. S.K. Das, S.U.S. Choi, W. Yu, T. Pradet, Nanofluids: Science and Technology (Wiley, New Jersey, 2007).

  16. J. Buongiorno, ASME J. Heat Transfer 128, 240 (2006).

    Article  Google Scholar 

  17. Y. Ding, H. Chen, L. Wang, C.-Y. Yang, Y. He, W. Yang, W.P. Lee, L. Zhang, R. Huo, Kona 25, 23 (2007).

    Article  Google Scholar 

  18. S.U.S. Choi, ASME J. Heat Transfer 131, 033106 (2009).

    Article  Google Scholar 

  19. S. Kakaç, A. Pramuanjaroenkij, Int. J. Heat Mass Transfer 52, 3187 (2009).

    Article  MATH  Google Scholar 

  20. K.F.V. Wong, O.D. Leon, Adv. Mech. Eng. 2010, 519659 (2010).

    Google Scholar 

  21. J. Sarkar, Renew. Sustain. Energy Rev. 11, 3271 (2011).

    Article  Google Scholar 

  22. J. Fan, L. Wang, ASME J. Heat Transfer 133, 040801 (2011).

    Article  Google Scholar 

  23. R. Saidur, S.N. Kazi, M.S. Hossain, M.M. Rahman, H.A. Mohammed, Ren. Sustain. Energy Rev. 15, 310 (2011).

    Article  Google Scholar 

  24. S. Thomas, C. Sobhan, Nanoscale Res. Lett. 6, 377 (2011).

    Article  ADS  Google Scholar 

  25. O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, Int. J. Heat Mass Transfer 57, 582 (2013).

    Article  Google Scholar 

  26. P. Filip, J. David, J. Petroleum Sci. Eng. 40, 111 (2003).

    Article  Google Scholar 

  27. E. Abu-Nada, Z. Masoud, A. Hijazi, Int. Commun. Heat Mass Transfer 35, 657 (2008).

    Article  Google Scholar 

  28. M.H. Matin, I. Pop, Int. J. Heat Mass Transfer 61, 353 (2013).

    Article  Google Scholar 

  29. M.H. Matin, I. Pop, Numer. Heat Transfer A 65, 84 (2014).

    Article  ADS  Google Scholar 

  30. M.H. Matin, W.A. Khan, Int. Commun. Heat Mass Transfer 43, 112 (2013).

    Article  Google Scholar 

  31. A.V. Kuznetsov, D.A. Nield, Int. J. Heat Mass Transfer 65, 682 (2013).

    Article  Google Scholar 

  32. A.V. Kuznetsov, D.A. Nield, Int. J. Thermal Sci. 77, 126 (2014).

    Article  Google Scholar 

  33. D.A. Nield, A.V. Kuznetsov, Int. J. Heat Mass Transfer 52, 5792 (2009).

    Article  MATH  Google Scholar 

  34. D.A. Nield, A.V. Kuznetsov, Int. J. Heat Mass Transfer 68, 211 (2014).

    Article  Google Scholar 

  35. S. Kimura, I. Pop, Int. J. Heat Mass Transfer 35, 3105 (1992).

    Article  MATH  Google Scholar 

  36. H.F. Oztop, E. Abu-Nada, Int. J. Heat Fluid Flow 29, 1326 (2008).

    Article  Google Scholar 

  37. H.C. Brinkman, J. Chem. Phys. 20, 571 (1952).

    Article  ADS  Google Scholar 

  38. E. Abu-Nada, H.F. Oztop, Int. J. Heat Fluid Flow 30, 669 (2009).

    Article  Google Scholar 

  39. M. Muthtamilselvan, P. Kandaswamy, L. Lee, Commun. Nonlinear Sci. Numer. Simulat. 15, 1501 (2010).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. K.L. Walker, G.M. Homsy, J. Fluid Mech. 87, 338 (1978).

    Article  Google Scholar 

  41. A. Bejan, Lett. Heat Mass Transfer 6, 82 (1979).

    Article  Google Scholar 

  42. C. Beckermann, R. Viskanta, S. Ramadhyani, Numer. Heat Transfer 10, 446 (1986).

    Article  Google Scholar 

  43. R. Gross, M.R. Bear, C.E. Hickox, The application of flux-corrected transport (FCT) to high Rayleigh number natural convection in a porous medium, in Proceedings of the 7th International Heat Transfer Conference, San Francisco, CA (1986).

  44. S.L. Moya, E. Ramos, M. Sen, Int. J. Heat Mass Transfer 30, 630 (1987).

    Article  Google Scholar 

  45. D.M. Manole, J.L. Lage, ASME Conf. 105, 44 (1992).

    Google Scholar 

  46. A.C. Baytas, I. Pop, Int. J. Heat Mass Transfer 42, 1047 (1999).

    Article  MATH  Google Scholar 

  47. I.A. Aleshkova, M.A. Sheremet, Int. J. Heat Mass Transfer 53, 5308 (2010).

    Article  MATH  Google Scholar 

  48. M.A. Sheremet, T.A. Trifonova, Numer. Heat Transfer A 64, 994 (2013).

    Article  ADS  Google Scholar 

  49. M.A. Sheremet, T. Grosan, I. Pop, ASME J. Heat Transfer 136, 082501 (2014).

    Article  Google Scholar 

  50. M.A. Sheremet, I. Pop, Transp. Porous Media 103, 191 (2014).

    Article  MathSciNet  Google Scholar 

  51. M.C. Charrier-Mojtabi, Int. J. Heat Mass Transfer 40, 1521 (1997).

    Article  MATH  Google Scholar 

  52. K. Khanafer, A. Al-Amiri, I. Pop, Int. J. Heat Mass Transfer 51, 1613 (2008).

    Article  MATH  Google Scholar 

  53. J.P. Caltagirone, J. Fluid Mech. 76, 337 (1976).

    Article  MATH  ADS  Google Scholar 

  54. Y.F. Rao, K. Fukuda, S. Hasegawa, ASME J. Heat Transfer 109, 919 (1987).

    Article  Google Scholar 

  55. H.H. Bau, Int. J. Heat Mass Transfer 27, 2277 (1984).

    Article  MATH  Google Scholar 

  56. G.N. Facas, Numer. Heat Transfer A 27, 595 (1995).

    Article  ADS  Google Scholar 

  57. G.N. Facas, B. Farouk, ASME J. Heat Transfer 105, 660 (1983).

    Article  Google Scholar 

  58. Z. Alloui, P. Vasseur, Comp. Thermal Sci. 3, 407 (2011).

    Article  Google Scholar 

  59. J.P. Barbosa Mota, E. Saatdjian, ASME J. Heat Transfer 116, 621 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Pop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheremet, M.A., Pop, I. Natural convection in a horizontal cylindrical annulus filled with a porous medium saturated by a nanofluid using Tiwari and Das’ nanofluid model. Eur. Phys. J. Plus 130, 107 (2015). https://doi.org/10.1140/epjp/i2015-15107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15107-4

Keywords

Navigation