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Abstract. We examine a vibrational energy harvester consisting of a mechanical resonator with a fractional
damping and electrical circuit coupled by a piezoelectric converter. By comparing the bifurcation diagrams
and the power output we show that the fractional order of damping changes the system response consider-
ably and affects the power output. Various dynamic responses of the energy harvester are examined using
phase trajectory, Fourier spectrum, Multi-scale entropy and 0-1 test. The numerical analysis shows that
the fractionally damped energy harvesting system exhibits chaos, and periodic motion, as the fractional
order changes. The observed bifurcations strongly influence the power output.

1 Introduction

A recent concept of frequency broadband energy harvesting systems consists of using nonlinear phenomena (such as
material nonlinearities), geometrical nonlinearities, and multi-scale responses resulting in the appearance of multiple
solutions. The broadband effects can be observed from the nonlinear time series analysis of simulated mathematical
models or from measured system responses in experiments. It is well known that the efficiency of many engineered
systems may be enhanced by operation in a nonlinear regime. Nonlinear vibrational energy harvesting shows an
advantage when the ambient vibration source of energy is variable in amplitude and frequency.

Energy harvesters using the nonlinear effects have been proposed in different configurations [1–7]. Among them an
application of a double well potential was proposed [8–13]. Gammaitoni et al. [9] and Masana and Daqaq [14] discussed
the conditions of inter-well hopping. In fact, the Duffing oscillator, as the simplest model, was used for many energy
harvesting simulations, with the addition of electromechanical coupling for the harvesting circuit [15–19]. McInnes et
al. [20], Kwuimy et al. [21] and Martens et al. [22] investigated the stochastic resonance phenomena for a nonlinear
system with a double potential well.

Recently, in the context of broadband energy harvesting, bifurcations and chaotic vibrations have been studied in
several papers. Cao et al. [23] and Kwuimy et al. [24] studied chaos in the fractionally damped broadband piezoelectric
energy generator in the system with additional magnets. Syta et al. [25] analysed the dynamic response of a piezoelectric
material attached to a bistable laminate plate is examined based on the experimental generated voltage time series.
It is worth noting that chaotic vibrations are, in most cases, characterized by moderate amplitude of vibrations
and simultaneously give a continuous frequency spectrum, which can be useful for increasing mechanical resonator
durability.

In this article we discuss different solutions appearing in the double well system in the presence of the visco-elastic
damping with a fractional characteristics. A fractional derivative present in the dynamical systems is usually related
to complex phenomena possessing multiple relaxation rates, which is one way to model hysteresis. Especially, we focus
on the influence of the fractional order of mechanical damping on the energy harvester dynamical response in terms
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of the voltage output. Occurrence of intra- and inter-well oscillations as well as periodic and chaotic vibrations lead
to different efficiencies in energy harvesting. Therefore, we identify the types and characteristic properties of given
solutions by using nonlinear methods.

2 Mathematical model and equations of motion

In the present model we considered the vertical flexible beam with fractional damping (fig. 2) and nonharmonic
potential dependent on the magnets orientation angle. The differential equations reads:

Mẍ(t) + CDαx(t) + Kx(t) − Fm − Θu(t) = Fe (1)
Cpu̇(t) + Θẋ(t) + R−1u(t) = 0, (2)

where x(t) is the horizontal displacement of the tip mas (magnet) on the beam, M and K are the effective mas
and stiffness, C is the fractional damping coefficient with the fractional derivative Dα of the damping order α, u(t)
is the output voltage, Cp is the capacity of the piezoelectric electrodes, R is electrical resistance and Θ is coupling
between mechanical and electrical subsystems. ẏ denotes the time derivative of variable y. Fm is the magnetic force
inducing nonlinearities in the system, while Fe excitation harmonic force Fe/M = A sin(2πft). The system parameters
have been identified from the experiments: M = 0.0061 kg; C = 0.0247Ns/m; K = 63.8N/m; Θ = 9.19 × 10−5 N/V,
R = 10MΩ (parameters after [23]).

In the simulations we change α for the fixed excitation amplitude A = 0.56 g, where g is the gravitational acceler-
ation, while the frequency was f = 10Hz. The nonlinear magnetic force is expanded as a polynomial:

−Fm = a0 + a1z(t) + a2z
2(t) + . . . + anzn(t), (3)

where a0 = 0, a1 = 79.17 [N/m]; a2 = 0; a3 = −2.61 × 105 [N/m3] and an is zero for n > 3.
In order to implement the fractional-order operator Dα into numerical simulations we used a polynomial expansion.

Namely, for the fractional derivative approximation Dα we used a continued fraction expansion based on Tustin and/or
Euler transformation [26–29].

The continued fraction expansion (CFE) based on the Tustin transformation is

Z{Dα}x(t) = CFE
{(

2
T

1 − z−1

1 + z−1

)α}
X(z) ≈

(
2
T

)α
Fp(z−1)
Qq(z−1)

X(z), (4)

while CFE based on the Euler transformation is

Z{Dα}x(t) = CFE
{(

1 − z−1

T

)α}
X(z) ≈

(
1
T

)α
Fp(z−1)
Qq(z−1)

X(z), (5)

where Z{·} is the Z-transform operator, X(z) represents the Z-transform of x(t),

X(z) = Z{x[n]} =
∑

n

x[n]z−n (6)

and T is the sampling period, and n is the discrete time index.
In the numerical simulation, the orders of p and q (in Pp and Qq polynomials) were equal to 10 and the sampling

period T was set to 0.002.
After the CFE decomposition the algebraic expression (eqs. (4) or (5)) can be transformed back to the time domain

using the infinite impulse response (IIR) filter approximated to different fractional operators.

3 Numerical simulations and results

Following [23] we use the same set of system parameters. The beam-magnet (fig. 1(a)) system is excited at the base
with harmonic excitation. Figure 1(b) shows the restoring force potential V (x) (Fm −Kx = −dV (x)/dx) used in the
calculations.

The simulations were performed for eqs. (1) and (2) using various values of fractional order α ∈ (0, 1.5]. The results
for displacement are summarized in figs. 2(a) and (b). The initial conditions were set for α = 0.01 as (x, ẋ, u, u̇) =
(0, 0, 0, 0), and increased by 0.01 quasistaticaly during the simulations.

Figures 2(a) and (b) show the bifurcation diagram of displacement using the distribution local maxima xmax and
the main value of displacement x̄ calculated for 51 cycles, respectively. Note that the single or multiple discrete lines
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Fig. 1. (a) Schematic of the nonlinear energy harvester with a flexible beam, piezoelectric layer, and external magnets. (b)
Potential including magnetic and elastic components. Note the position of the potential minima are x1/2 = ∓0.0077 m.
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Fig. 2. (a) Bifurcation diagrams of displacement local maxima versus the fractional order α; (b) the mean value x̄ versus the
fractional order α.

(α ∈ [0.53, 0.78], [1.00, 1.50] with small windows in [0.79, 0.99]), in fig. 2(a), correspond to the one or multiperiod
regular solutions while some wider distributions of maxima (α ∈ (0, 0.52], and [0.79, 0.99] excluding some small regular
windows inside) indicate the nonperiodic behaviour. On the other hand, the x̄ shows the evolution of the center of
oscillations. It is easy to notice that for α < 1 the center of oscillation is a more symmetric distribution (note that for
nonperiodic solution the mean value of x̄ would tend to 0 asymptotically) and for α > 1 the center of oscillation is
clearly shifted to one of potential minima with x ≈ 0.008. Interestingly, for larger α we have a stronger damping effect
and the system response stays in one of the potential wells close to its minimum (see x2 in fig. 1(b)).

In fig. 3(a) we show the bifurcation diagram using the voltage maxima. The diagram shows the changes in periodicity
response corresponding to fig. 2(a). There are three main regions of the discrete points aggregations representing various
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Fig. 3. (a) Bifurcation diagrams of displacement local voltage output versus the fractional order α; (b) Variance voltage, Var(u),
output against α.

types of periodic responses (depending on the number of discrete points) and more homogeneous broad distributions
representing a nonperiodic response. More importantly the different solutions relate to different power outputs. This
value was represented by the variance of the voltage and plotted in fig. 3(b). Note that the occurance of periodic
solutions with larger amplitude is the most effective for energy harvesting. The noperiodic (chaotic) solutions are
showing variable power. Finally, for larger α we reach the region of single well vibrations of the beam with small
variation of voltage and consequently decreased power output. In summary, by increasing α the power output increases
initially to reach the maximum value for large amplitude periodic oscillations, however further increasing α decreases
the power as the rate of mechanical damping losses are larger.

Corresponding to the dynamics represented in figs. 2 and 3, the system response is changing considerably. Next we
present the corresponding time series related to α = 0.35, 0.78, 0.85, 1.00, 1.195, 1.25 (marked also in figs. 2 and 3 by
vertical lines) with more details.

Figure 4 shows the cases studied. Apart from the time series plotted for each value of considered α we also plot
the reconstructed phase portraits by using the delayed coordinate. The delay Δt has been chosen in the standard way
using a quarter of excitation frequency. Note that for a harmonic oscillator such a deference is usually present between
displacement and velocity. Interestingly the fractional derivatives introduces the change to this rule proportional to α

Dα(sin(x)) = sin(x − απ/2), (7)

which could favour the bifurcations during changing α. In fig. 4 one can clearly identify the periodic solutions by
looking for closed lines in the phase portrait (see figs. 4(b), (d)–(f)). However during the changes of α the system
bifurcates from a period one solution (figs. 4(b) and (f)) to period four and period five solutions (see figs. 4(e) and
(d), respectively). The other two cases shown in figs. 4(a) and (c) have a nonperiodic structure.

4 Fourier and multi-scale entropy analyses

To improve understanding of the behaviour of complex systems that manifest themselves in nonlinear behaviour, sample
entropy analysis is becoming increasingly popular [30]. This method provides, for measured signals, a relative level
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Fig. 4. Voltage open circuit time series and the corresponding phase portrait with delayed coordinate (the time delay Δt was
fixed to one quarter of excitation period) for α = 0.35, 0.78, 0.85, 1.00, 1.195, 1.25 for (a)–(f), respectively. The same α values
were marked by vertical lines in figs. 2–3. The black stroboscopic points show the cycles of the voltage in terms of Δt (four
points per excitation period).

of complexity of finite length time series. The concept of multi-scale entropy (MSE) is based on the coarse-graining
procedure that uses a coarse-grained time series, as an average of the original data points within nonoverlapping
windows by increasing the scale factor τ according to the following formula [31]:

u
(τ)
j =

1
τ

jτ∑
i=(j−1)τ+1

ui, (8)

where u is a raw one-dimensional time series u = {u1, u2, . . . , uN}.
MSE allows identification of dynamical system behaviour for variable scaling factor τ . It was also noted in [32]

that the form/shape of the MSE is highly dependent on the time scales involved, and that the same MSE signatures
can be found for dynamically very different systems.

Additionally, composite multi-scale entropy (CMSE) considers multiple choice of the nonoverlapping windows [33].
In this approach for each scale factor τ , the MSE calculation based on the time series of the coarse-grained u

(τ)
j (see

fig. 5),

MSE(u, τ,m, r) = SampEn
(
u(τ),m, r

)
. (9)

where m = 2 is the pattern length and r is the similarity criterion and is usually chosen to be r < σu [34]. Here σu is
the standard deviation of the original time series and u

(1)
i = ui.
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Fig. 4. Continued.

Fig. 5. Schematic picture showing the concept of higher scales.

To estimate SampEn(u(τ),m, r) we count the number of vector pairs denoted by u(τ)(i) and u(τ)(j) in the time
series of length m and m + 1 having distance d[u(τ)(i), u(τ)(j)] < r. We denote them by Pm and Pm+1, respectively.
Finally, we define the sample entropy to be [35]

SampEn
(
u(τ),m, r

)
= − log

Pm+1

Pm
. (10)

Strictly speaking, it is the minus of the logarithm of the conditional probability that two sequences with a tolerance
r form points that remain within r of each other at the next point.

Continuing these research efforts Wu et al. [33] introduced the concept of a composite multi-scale entropy (CMSE),
which for higher scale factor provides entropy more reliably than the usual multi-scale entropy by including multiple
combinations of neighbour points. The prescribed algorithm for CMSE calculations is the following formula:

CMSE(u, τ,m, r) =
1
τ

τ∑
k=1

SampEn
(
u(τ)

k ,m, r
)

. (11)



Eur. Phys. J. Plus (2015) 130: 103 Page 7 of 11

(a)

0 10 20 30 40
10

−4

10
−2

10
0

frequency f [Hz] 

am
pl

itu
de

 u
0 [

V
]

0 10 20 30 40 50
0

1

2

3

scale factor τ

C
M

SE

(b)

0 10 20 30 40
10

−4

10
−2

10
0

frequency f [Hz] 

am
pl

itu
de

 u
0 [

V
]

0 10 20 30 40 50
0

0.5

1
× 10−2

scale factor τ

C
M

SE

(c)

0 10 20 30 40
10

−4

10
−2

10
0

frequency f [Hz] 

am
pl

itu
de

 u
0 [

V
]

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

scale factor τ

C
M

SE

Fig. 6. Fourier spectra and CMSE for α = 0.35, 0.78, 0, 85, 1.00, 1.195, 1.25 for (a)–(f), respectively. The same α values were
marked by lines in figs. 2 and 3. The results of CMSE for m = 2 (length of the chain) and three values of the similarity factor
r (r = 0.01σu - red line, 0.1σu - black line, and 1σu - blue line). Note that oscillations of CMSE between large and nearly
zero values or permanent zero value (for all lines) signal a regular solution. Otherwise the solution is chaotic (as in panels (a)
and (c)). In fig. 6(f), where all CMSE (for r/σu = 0.01, 0.1, 1) collapsed to 0, there is additional r = 2σu (green line).

The resulting Fourier spectra and CMSE are plotted in fig. 6 for the cases examined here. Note that the Fourier
spectra are fairly broad for nonperiodic cases (see figs. 6(a) and (c)) and have discrete peak structures for the periodic
cases (see figs. 6(b), (d)–(f)). Furthermore, because of nonlinearities, the peak structure appears in the multiples of
excitation frequencies. On the other hand, the structures of multi-scale entropy plots are characterized by a permanent
finite value of CMSE (especially in the red curve where the similarity factor takes the smallest value, r = 0.01σu)
for a nonperiodic system responses. In contrast, for periodic solutions the entropy CMSE tends to 0. In this case the
solution could oscillate with the change of scale (see figs. 6(b), (d)–(e)) or be permanently 0 (as in fig. 6(f)) for some
coincidence in sampling and excitation frequencies. In the estimations of CMSE we used the series of the stroboscopic
points plotted in fig. 4.

5 The 0-1 test

The “0-1 test”, invented by Gottwald and Melbourne [36, 37], can be applied for any systems of finite dimension to
identify chaotic dynamics, however, it is based on the statistical properties of a single coordinate only. Thus it is
suitable to quantify the response where only one parameter is measured in time. The test is related to the universal
properties of dynamical systems, such as spectral measures, and can therefore distinguish a chaotic system from a
regular one using a single variable.
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Fig. 6. Continued.

A particular advantage of the 0-1 test over the frequency spectrum is that it provides information regarding the
dynamics in a single parameter value, similar to the Lyapunov exponent. However, the Lyapunov exponent can be
difficult to estimate in any nonsmooth simulated system or measured data [38]. Therefore the 0-1 test can provide a
suitable algorithm to identify the chaotic solution [39–44].

To start the analysis, we discretize the investigated time series u(t) → u(i) using the characteristic delay time Δt
equal to one quarter of the excitation period 2π/ω (as the points shown in figs. 3 and 4). This roughly indicates the
vanishing of the mutual information [39,45]. Starting from one of the initial map coordinates u(i), for sampling points
i = 1, . . . , N , we define new coordinates p(n) and q(n) as

p(n) =
n∑

j=0

(u(j) − u)
σu

cos(jc),

q(n) =
n∑

j=0

(u(j) − u)
σu

sin(jc), (12)

where n = 1, . . . , N , u denotes the average value of u, σu the corresponding standard deviation, and c ∈ (0, π) is a
constant. Note that q(n) is a complementary coordinate in the two-dimensional space. Furthermore, starting from the
bounded coordinate u(i) we build a new series p(n) which can be either bounded or unbounded depending on the
dynamics of the examined process.
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Continuing the calculation procedure, the total mean square displacement is defined as

Mc(n) = lim
N→∞

1
N

N∑
j=1

[
(p(j + n) − p(j))2 + (q(j + n) − q(j))2

]
. (13)

The asymptotic growth of Mc(n) can be easily characterised by the corresponding ratio K ′
c(n)

K ′
c(n) =

ln(M(n))
ln n

. (14)

In the limit as n → ∞ (in present calculations n = nmax = 270, while N = 2700) we obtain the corresponding values
of Kc for a chosen value of c. Note, our choice of the limits on nmax and N (in eqs. (13) and (14)) is consistent with
that proposed by Gottwald and Melbourne [40,41,46]. N,nmax → ∞ but simultaneously nmax should be about N/10.

It is important to note that the parameter c acts like a frequency in a spectral calculation. If c is badly chosen,
it could resonate with the excitation frequency or its super- or sub-harmonics. In the 0-1 test, a periodic motion
would yield a regular behaviour in the (p, q)- plane with corresponding Mc(n) constant in time. On the other hand, a
nonperiodic motion is characterized by an expanding behaviour in the (p, q)-plane with corresponding Mc(n) increasing
in time [40]. The disadvantage of the test, its strong dependence on the chosen parameter c, can be overcome by a
proposed modification. Gottwald and Melbourne [36, 40] suggested randomly chosen values of c are taken and the
median of the corresponding Kc-values are computed.

In [40] a covariance formulation is used with

Kc =
cov(X,Mc)√
var(X)var(Mc)

, (15)

where vectors X = [1, 2, . . . , nmax], and Mc = [Mc(1),Mc(2), . . . ,Mc(nmax)].
In the above, the covariance cov(x,y) and variance var(x), for arbitrary vectors x and y of nmax elements, and

the corresponding averages x and y, respectively, are defined as

cov(x,y) =
1

nmax

nmax∑
n=1

(x(n) − x)(y(n) − y),

var(x) = cov(x,x). (16)

Note that using eqs. (15) and (16) automatically cancels out the means and eq. (12) can be defined without
substraction of u.

Finally, the median is taken of the Kc-values in eq. (15), corresponding to 100 equally spaced random values of
c ∈ (0, π). Such an average K̄-value can now be estimated for various orders α. The differences between regular motion
(circle like in the (p, q)-plane in figs. 7(b), (d)–(f)) and the chaotic one (random walking like in the (p, q)-plane in
figs. 7(a) and (c)) are visible on figs. 7(a)–(f) plotted for c = 1.0. Appart from the pattern, it is also worth noticing
the difference in scale, which is about ten times larger in figs. 7(a) and (c) as in figs. 7(a)–(f). The estimated values
K̄ = 0.993, −0.005, 0.994, 0.000, −0.005, −0.004 for the cases (a)–(f) (see also figs. 2 and 3), respectively. This is the
direct confirmation that the cases, in figs. 7(a) and (c), represent chaotic responses while the rest of cases, in figs. 7(b),
(d)–(f), are related to various periodic responses.

6 Summary and conclusions

The occurrence of multiple relaxation times in visco-elastic materials is an important material property leading to
hysteretic behaviour. Damping may be described by many ways, by introducing the extra degrees of freedom which
could be related to the physical domains and/or to parametrize the hysteresis. We characterized the damping term
by fractional derivative which uses memory as additional information of the actual state of the dynamical system. Its
influence is reflected in the time delayed variables (in the Grunwald-Letnikov definition) or by the convolution with
the fractional power function of time (in the Riemann-Liouville definition). In these treatments the weight coefficients
of time delay importance are defined by a fractional power. In our case, the fractional derivative is based on the
Tustin-Euler spectrum of frequencies related to the characteristic time delays.

By changing the fractional order in the damping term we study bifurcation between various periodic and chaotic
vibrations. To examine the specific solutions we used the Fourier spectra and phase portraits. The results were
quantified by multi-scale entropy through the 0-1 test. We noticed that a series of bifurcations were caused by the
fractional derivative. For a large value of the fractional order alpha (α > 1) the mechanical resonator is damped
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Fig. 7. Phase portraits in the space (p, q) (p(n), q(n) for n = 1, . . . , 2700) for c = 1. The estimated 0-1 test parameters, K̄, are
K̄ = 0.993, −0.005, 0.994, 0.000, −0.005, −0.004 for fig. 7(a)–(f) (for the same α values as marked by vertical lines in figs. 2
and 3.) Note that the asymptotic value of the parameter K̄ → 0 for regular motion and K̄ → 1 for chaos (cases (a) and (c)).

strongly and its oscillations are limited to that of a single potential well. For small and medium values of alpha
(α < 1) we noticed larger amplitude responses in both the mechanical resonator displacement and voltage output.
However the power output significantly depended on the particular solution. For example, the appearance of chaotic
vibrations reduced the harvested energy.

In most cases, nonlinear systems are characterised by multiple solutions including periodic and nonperiodic, and/or
resonant and nonresonant solutions. By changing the systems parameters, the specific solutions undergo bifurcations
leading to different power outputs. The results provided here regarding the system response will help designers of
nonlinear energy harvesting devices by providing intuition when trying to optimise the power output.
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