Skip to main content
Log in

Lattice Boltzmann study on thermoacoustic onset in a Rijke tube

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Nonlinear thermoacoustic self-excited onset was numerically studied in this work. A lattice Boltzmann model for viscous compressible flow and the implicit-explicit finite difference method were used to develop a solver. Nonlinear onset in an open-open Rijke tube with a constant-temperature stack was simulated with the solver. Based on the numerical results, overall onset process and self-excited standing wave in the Rijke tube are observed. The length of the Rijke tube along the x -direction covers a 1/4 wavelength of the standing wave and the main component of this standing wave is 171.2Hz. These results agree well with the theoretical prediction. Instantaneous velocity and temperature fields at several phases under the limit cycle are presented and discussed. The maximal Mach number is about 0.035, indicating that the flow in the Rijke tube is a low Mach number compressible flow. This solver can also be applied for simulations of some other complex flows, such as the flow in porous media stack in thermoacoustic engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gopinath, N.L. Tait, S.L. Garrett, J. Acoust. Soc. Am. 103, 1388 (1998)

    Article  ADS  Google Scholar 

  2. C.C. Hantschk, D. Vortmeyer, J. Sound Vib. 277, 511 (1999)

    Article  ADS  Google Scholar 

  3. C.C. Hantschk, D. Vortmeyer, Chem. Eng. Technol. 23, 758 (2000)

    Article  Google Scholar 

  4. B. Entezam, W.K.V. Moorhem, J. Majdalani, Numer. Heat Transfer A 41, 245 (2002)

    Article  ADS  Google Scholar 

  5. G.Y. Yu et al., J. Appl. Phys. 102, 074901 (2007)

    Article  ADS  Google Scholar 

  6. L. Kabiraj, R.I. Sujith, J. Fluid Mech. 713, 376 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. L. Qiu et al., Chin. Sci. Bull. 58, 1325 (2013)

    Article  Google Scholar 

  8. D.M. Sun et al., Appl. Acoust. 81, 50 (2014)

    Article  Google Scholar 

  9. K.T. Feldman, J. Sound Vib. 7, 83 (1968)

    Article  ADS  Google Scholar 

  10. W. Kunz, Untensuchungen zum anregungsmechanismus thermoakustischer schwingungen am beispiel des Rijke phänomens (Technische Universität, Berilin, 1981)

  11. M.A. Heckl, Acustica 72, 63 (1990)

    Google Scholar 

  12. P. Chatterjee et al., J. Sound Vib. 283, 573 (2005)

    Article  ADS  Google Scholar 

  13. S. Succi, Lattice Boltzmann equation for fluid dynamics and beyond (Clarendon Press, Oxford, 2001)

  14. G.R. McNamara, G. Zanetti, Phys. Rev. Lett. 61, 2332 (1988)

    Article  ADS  Google Scholar 

  15. J.M. Buick, C.A. Greated, D.M. Campbell, Europhys. Lett. 43, 235 (1998)

    Article  ADS  Google Scholar 

  16. D. Haydock, J.M. Yeomans, J. Phys. A 34, 5201 (2001)

    ADS  MATH  MathSciNet  Google Scholar 

  17. X.M. Li, R.C.K. Leung, R.M.C. So, AIAA J. 44, 78 (2006)

    Article  ADS  Google Scholar 

  18. H. Kang, M. Tsutahara, Int. J. Numer. Methods Fluids 53, 629 (2007)

    Article  ADS  MATH  Google Scholar 

  19. D.K. Sun et al., Chin. Phys. Lett. 30, 074702 (2013)

    Article  ADS  Google Scholar 

  20. Y. Wang, S. Elghobashi, Respir. Physiol. Neurobiol. 193, 1 (2014)

    Article  Google Scholar 

  21. Y. Wang et al., Int. J. Heat Mass Transfer 51, 3082 (2008)

    Article  MATH  Google Scholar 

  22. Y. Wang et al., Int. J. Numer. Methods Fluids 59, 853 (2009)

    Article  MATH  Google Scholar 

  23. Y. Wang et al., Int. J. Mod. Phys. C 21, 383 (2010)

    Article  ADS  MATH  Google Scholar 

  24. Y. Wang et al., Int. J. Mod. Phys. C 18, 1961 (2007)

    Article  MATH  Google Scholar 

  25. T. Kataoka, M. Tsutahara, Phys. Rev. E 69, 035701 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  26. Z.L. Guo, C.G. Zheng, B.C. Shi, Chin. Phys. 11, 0366 (2002)

    Article  ADS  Google Scholar 

  27. L. Pareschi, G. Russo, J. Sci. Comput. 25, 129 (2005)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Sun, DK., He, YL. et al. Lattice Boltzmann study on thermoacoustic onset in a Rijke tube. Eur. Phys. J. Plus 130, 9 (2015). https://doi.org/10.1140/epjp/i2015-15009-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15009-5

Keywords

Navigation