Skip to main content
Log in

Magnetohydrodynamic flow of water/ethylene glycol based nanofluids with natural convection through a porous medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this study, the natural convection boundary layer flow along with inverted cone, magnetic and heat generation on water and ethylene glycol based nanofluids is considered by means of variable wall temperature. Porous medium is also taken into account. The physical problem is first modeled and then the governing equations are transformed into nonlinear ordinary differential equations under the assumptions of the Boussinesq approximation. Analytical solutions of nonlinear coupled equations are obtained by the homotopy analysis method. Correlation of skin friction and heat transfer rate corresponding to active parameters is also presented. Obtained results are illustrated by graphs and tables in order to see the effects of physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noreen Sher Akbar, Z.H. Khan, S. Nadeem, Eur. Phys. J. Plus 129, 123 (2014)

    Article  Google Scholar 

  2. M. Sheikholeslami, S. Soleimani, M. Gorji-Bandpy, D.D. Ganji, S.M. Seyyedi, Int. Commun. Heat Mass Transfer 39, 1435 (2012)

    Article  Google Scholar 

  3. D.B. Ingham, I. Pop, Transport Phenomena in Porous Media, Vol. III (Elsevier, Oxford, 2005)

  4. P. Vadasz, Emerging Topics in Heat and Mass Transfer in Porous Media (Springer, New York, 2008)

  5. J. Garg, B. Poudel, M. Chiesa, J.B. Gordon, J.J. Ma, J.B. Wang, Z.F. Ren, Y.T. Kang, H. Ohtani, J. Nanda, G.H. McKinley, G. Chen, J. Appl. Phys. 103, 074301 (2008)

    Article  ADS  Google Scholar 

  6. S.U.S. Choi, J.A. Eastman, Developments and Applications of Non-Newtonian Flows, edited by D.A. Siginer, H.P. Wang (ASME, New York, 1995)

  7. K.V. Wong, Omar De Leon, Adv. Mech. Eng. 2010, 11 (2010)

    Google Scholar 

  8. K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transfer 46, 3639 (2003)

    Article  MATH  Google Scholar 

  9. N.S. Akbar, S. Nadeem, Z. Naturforsch. A 68a, 433 (2013)

    Article  Google Scholar 

  10. M.Y. Malik, A. Hussain, S. Nadeem, Z. Naturforsch. A 67a, 255 (2012)

    Article  Google Scholar 

  11. C. Fetecau, M. Rana, C. Fetecau, Z. Naturforsch. A 68a, 130 (2013)

    Article  Google Scholar 

  12. M.I.A. Othman, S.M. Abo-Dahab, Kh. Lotfy, Appl. Math. Comput. 230, 597 (2014)

    Article  Google Scholar 

  13. I.A. Abbas, M.F. El-Amin, A. Salama, Int. J. Heat Fluid Flow 30, 229 (2009)

    Article  Google Scholar 

  14. F.N. Lin, Lett. Heat Mass Transfer 3, 49 (1976)

    Article  ADS  Google Scholar 

  15. I. Pop, T. Watanabe, Int. Commun. Heat Mass Transfer 19, 275 (1992)

    Article  Google Scholar 

  16. M.A. Hossain, S.C. Paul, A.C. Mandal, Int. J. Numer. Methods Heat Fluid Flow 12, 290 (2002)

    Article  MATH  Google Scholar 

  17. K.A. Yih, Acta Mech. 137, 83 (1999)

    Article  MATH  Google Scholar 

  18. K. Vafai, Porous Media: Applications in Biological Systems and Biotechnology (Taylor & Francis, 2011)

  19. P. Vadasz, Emerging Topics in Heat and Mass Transfer in Porous Media (Springer, New York, 2008)

  20. R. Ellahi, M. Mubeshir Bhatti, A. Riaz, M. Sheikholeslami, J. Porous Media 17, 143 (2014)

    Article  Google Scholar 

  21. S.J. Liao, PhD thesis, Shanghai Jiao Tong University (1992)

  22. S.J. Liao, Appl. Math. Comput. 147, 499 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. S.J. Liao, A. Campo, J. Fluid Mech. 453, 411 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, (Chapman & Hall/CRC Press, Boca Raton, 2003)

  25. R. Ellahi, Appl. Math. Model. 37, 1451 (2013)

    Article  MathSciNet  Google Scholar 

  26. R. Ellahi, S. Aziz, A. Zeeshan, J. Porous Media 6, 205 (2013)

    Article  Google Scholar 

  27. A. Tamayol, K. Hooman, M. Bahrami, Transp. Porous Media 85, 661 (2010)

    Article  MathSciNet  Google Scholar 

  28. H.F. Oztop, E. Abu-Nada, Int. J. Heat Mass Transfer 29, 1326 (2008)

    Google Scholar 

  29. M.J. Pastoriza-Gallego, L. Lugo, J.L. Legido, M.M. Piñeiro, Nanoscale Res. Lett. 6, 221 (2011)

    Article  ADS  Google Scholar 

  30. N. Jamshidi, M. Farhadi, D.D. Ganji, K. Sedighi, Int. J. Eng. 25, 201 (2012)

    Article  Google Scholar 

  31. S.J. Liao, Int. J. Non-Linear Mech. 38, 173 (2003)

    Article  Google Scholar 

  32. S. Liao, Homotopy Analysis Method in Nonlinear Differential Equations (Higher Education Press, Beijing, 2012)

  33. Y. Zhao, S. Liao, HAM-based package BVPh 2.0 for nonlinear boundary value problems, in Advances in Homotopy Analysis Method, edited by S. Liao (World Scientific Press, 2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ellahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeeshan, A., Ellahi, R. & Hassan, M. Magnetohydrodynamic flow of water/ethylene glycol based nanofluids with natural convection through a porous medium. Eur. Phys. J. Plus 129, 261 (2014). https://doi.org/10.1140/epjp/i2014-14261-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14261-5

Keywords

Navigation