Skip to main content
Log in

Self-similar flow due to the stretching of a deformable fiber

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The boundary layer flow over a stretching fiber in a stationary fluid is investigated by including the coupling of the flow and fiber dynamics. This approach is quite different from the literature on flows over a stretching fiber, which has prescribed fiber kinematics. The flow problem is formulated by using a curvilinear coordinate system, and self-similarity is invoked. The similarity transformations convert the governing partial differential equations of the flow into ordinary differential equations, involving parameters determined by considering the fiber dynamics. The similarity equations are solved numerically using a shooting method. Two kinds of fibers are considered including an elastic one and a viscous one. It is found that the fluid velocity over both kinds decays algebraically to the ambient, though with different rates. Self-similarity imposes restrictions on the parameters of the problem. Nonetheless, practically feasible parameters can be chosen and solutions thereof are presented. The solution can offer more accurate estimations of fiber dynamics and fluid flow for practical applications in fiber stretching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Altan, S. Oh, H. Gegel, Metal forming fundamentals and applications (American Society of Metals, Metals Park, OH, 1979).

  2. E.G. Fisher, Extrusion of plastic (Wiley, New York, 1976).

  3. Z. Tadmor, I. Klein, Engineering principles of plasticating extrusion, Polymer Science and Engineering Series (Van Norstrand Reinhold, New York, 1970).

  4. B.C. Sakiadis, AIChe J. 7, 26 (1961).

    Article  Google Scholar 

  5. B.C. Sakiadis, AIChe J. 7, 221 (1961).

    Article  Google Scholar 

  6. F.K. Tsou, E.M. Sparrow, R.J. Goldstain, Int. J. Heat Mass Transfer 10, 219 (1967).

    Article  Google Scholar 

  7. L.J. Crane, Z. Angew. Math. Phys. 21, 645 (1970).

    Article  Google Scholar 

  8. W.H.H. Banks, J. Mec. Theor. Appl. 2, 375 (1983).

    MATH  MathSciNet  Google Scholar 

  9. B.K. Dutta, P. Roy, A.S. Gupta, Int. Commun. Heat Mass Trans. 12, 89 (1985).

    Article  Google Scholar 

  10. L.J. Grubka, K.M. Bobba, ASME J. Heat Transfer 107, 248 (1985).

    Article  Google Scholar 

  11. C.K. Chen, M.I. Char, J. Math. Anal. Appl. 135, 568 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  12. M.E. Ali, Int. J. Heat Fluid Flow 16, 280 (1995).

    Article  Google Scholar 

  13. E.M.A. Elbashbeshy, J. Phys. D: Appl. Phys. 31, 1951 (1998).

    Article  ADS  Google Scholar 

  14. E. Magyari, B. Keller, J. Phys. D Appli. Phys. 32, 577 (1999).

    Article  ADS  Google Scholar 

  15. E. Magyari, B. Keller, Eur. J. Mech. B Fluids 19, 109 (2000).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. E. Magyari, M.E. Ali, B. Keller, Heat Mass Transfer 38, 65 (2001).

    Article  ADS  Google Scholar 

  17. E. Magyari, I. Pop, B. Keller, Fluid Dyn. Res. 33, 313 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. S.J. Liao, Int. J. Heat Mass Transfer 49, 2529 (2005).

    Article  Google Scholar 

  19. S.J. Liao, Int. J. Non-Linear Mech. 42, 819 (2007).

    Article  ADS  MATH  Google Scholar 

  20. B.C. Sakiadis, AIChe J. 7, 467 (1961).

    Article  Google Scholar 

  21. E.A. Koldenhof, AIChe J. 9, 411 (1963).

    Article  Google Scholar 

  22. L.J. Crane, Z. Angew. Math. Phys. 23, 201 (1972).

    Article  MATH  Google Scholar 

  23. L.J. Crane, Z. Angew. Math. Phys. 26, 619 (1975).

    Article  MATH  Google Scholar 

  24. C.Y. Wang, Phys. Fluids 31, 466 (1988).

    Article  ADS  Google Scholar 

  25. M.M. Belova, V.R. Borovskii, N.D. Omel'chuk, Sov. Appl. Mech. 16, 1090 (1980).

    Article  ADS  MATH  Google Scholar 

  26. A. Ishak, R. Nazar, I. Pop, Appl. Math. Model. 32, 2059 (2008).

    Article  MATH  Google Scholar 

  27. P.D. Weidman, M.E. Ali, Eur. J. Mech. B Fluids 30, 120 (2011).

    Article  ADS  MATH  Google Scholar 

  28. C.Y. Wang, Commun. Nonlinear Sci. Numer. Simulat. 17, 1098 (2012).

    Article  ADS  Google Scholar 

  29. C.Y. Wang, C.O. Ng, Int. J. Non-Linear Mech. 46, 1191 (2011).

    Article  ADS  Google Scholar 

  30. T. Fang, J. Zhang, Y. Zhong, H. Tao, Chin. Phys. Lett. 28, 124707 (2011).

    Article  ADS  Google Scholar 

  31. T. Fang, J. Zhang, Y. Zhong, Appl. Math. Comput. 218, 7241 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  32. T.T. Al-Housseiny, H.A. Stone, J. Fluid Mech. 706, 597 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. M.M. Denn, Ann. Rev. Fluid Mech. 12, 365 (1980).

    Article  ADS  Google Scholar 

  34. L.F. Crabtree, D. Kuchemann, L. Sowerby, Three-Dimensional Boundary Layers, in Laminar Boundary Layers, edited by L. Rosenhead (Oxford University Press, Oxford, 1966) Chapt. VIII, pp. 417-419.

  35. F.M. White, Viscous fluid flow, second edition (McGraw-Hill, New York, 1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiegang Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, T., El-Mistikawy, T.M.A. Self-similar flow due to the stretching of a deformable fiber. Eur. Phys. J. Plus 129, 252 (2014). https://doi.org/10.1140/epjp/i2014-14252-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14252-6

Keywords

Navigation