Skip to main content
Log in

Modified BBGKY hierarchy for the hard-sphere system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper a statistical approach is formulated for classical N-body systems formed by smooth hard spheres. Based on the emerging new axiomatic approach to Classical Statistical Mechanics recently developed, modified collision boundary conditions for the N-body probability density are introduced, which apply also to dense or locally dense hard-sphere systems. As a result, a modified form is determined for the BBGKY hierarchy, which is characterized by a new representation for the s-body collision operator. The same hierarchy, obtained here in differential form starting from the differential Liouville equation, is found to admit both stochastic and deterministic particular solutions. As an application, in the Boltzmann-Grad limit the hierarchy is shown to recover the ordinary Boltzmann equation holding in the case of rarefied gases. Comparison with literature and physical implications of the theory are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Boltzmann, Wiener Ber. 66, 275 (1872)

    MATH  Google Scholar 

  2. Y.G. Sinai, Russ. Math. Surv. 25, 137 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  3. Y.G. Sinai, Dynamical Systems II: Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics (Springer-Verlag, Berlin, 1989)

  4. D.V. Anosov, Y.G. Sinai, Russ. Math. Surv. 22, 103 (1967)

    Article  MathSciNet  Google Scholar 

  5. Massimo Tessarotto, Claudio Cremaschini, Marco Tessarotto, Eur. Phys. J. Plus 128, 32 (2013)

    Article  Google Scholar 

  6. A.-L. Cauchy, Cours d’Analyse (Imprimerie royale, Paris, 1821) R. Bradley, C. Sandifer, Cauchy’s Cours d’analyse. An annotated translation, in Sources and Studies in the History of Mathematics and Physical Sciences (Springer, New York, 2009)

  7. A. Robinson, Non-Standard Analysis, in Princeton Landmarks in Mathematics and Physics (Princeton Univ. Press, USA, 1974)

  8. D. Enskog, Kungl. Svensk Vetenskps Akad. 63, 4 (1921) (English translation by S.G. Brush, Kinetic Theory

    Google Scholar 

  9. S. Chapman, T.G. Cowling, The mathematical theory of non-uniform gases (Cambridge University Press, 1939)

  10. H. van Beijeren, Physica 68, 437 (1973)

    Article  ADS  Google Scholar 

  11. E.G.D. Cohen, Physica 118A, 17 (1983)

    Article  ADS  Google Scholar 

  12. C. Cercignani, M. Lampis, J. Stat. Phys. 53, 655 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. M. Tessarotto, C. Cremaschini, Phys. Lett. A 378, 1760 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Tessarotto, C. Cremaschini, Eur. Phys. J. Plus 129, 157 (2014)

    Article  Google Scholar 

  15. C. Cercignani, Mathematical methods in kinetic theory (Plenum Press, New York, 1969)

  16. H. Grad, Handb. Phys. 12, 205 (1958)

    ADS  MathSciNet  Google Scholar 

  17. C. Cercignani, Theory and applications of the Boltzmann equation (Scottish Academic Press, Edinburgh and London, 1975)

  18. E.T. Jaynes, Phys. Rev. 106, 620 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. E.T. Jaynes, Phys. Rev. 108, 171 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Born, H.S. Green, Proc. R. Soc. A 188, 10 (1946) DOI:10.1098/rspa.1946.0093

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. N.N. Bogoliubov, J. Exp. Theor. Phys. 16, 691 (1946) (in Russian)

    Google Scholar 

  22. N.N. Bogoliubov, J. Phys. USSR 10, 265 (1946)

    Google Scholar 

  23. J.G. Kirkwood, J. Chem. Phys. 14, 180 (1946)

    Article  ADS  Google Scholar 

  24. J. Yvon, La théorie statistique des fluides et l’équation d’état, in Actualtés Scientifiques et Industrielles (Paris, Hermann, 1935) (in French)

  25. J. Loschmidt, Akad. Wiss. Wien 73, 128 (1876)

    Google Scholar 

  26. E. Zermelo, Ann. Phys. (Leipzig) 57, 485 (1896) (English translation by S.G. Brush, The kinetic theory of gases

    Article  ADS  Google Scholar 

  27. E. Zermelo, Ann. Phys. 59, 4793 (1896) (English translation by S.G. Brush, The kinetic theory of gases

    Google Scholar 

  28. L. Boltzmann, Ann. Phys. 57, 773 (1896) (English translation by S.G. Brush, The kinetic theory of gases

    Article  Google Scholar 

  29. L. Boltzmann, Ann. Phys. 60, 392 (1897) (English translation by S.G. Brush, The kinetic theory of gases

    Article  Google Scholar 

  30. L. Boltzmann, Vorlesungen über Gasstheorie, Vol. 2 (J.A. Barth, Leipzig, 1896-1898) (English translation by H. Brush, in Lectures on gas theory (University of California Press, 1964))

  31. O. Lanford III, Time evolution of large classical systems, in Dynamical Systems Theory and Applications, edited by E.J. Moser, Lect. Notes Phys., Vol. 38 (Springer-Verlag, Berlin, 1975)

  32. C. Cercignani, The Boltzmann equation and its applications, in Applied Mathematical Sciences, Vol. 67 (Springer-Verlag, Berlin, 1988)

  33. C. Cercignani, J. Stat. Phys. 58, 817 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. C. Cercignani, 134 years of Boltzmann equation, in Boltzmann’s legacy, edited by G. Gallavotti, W. Reiter, J. Yngvason, ESI Lecture in Mathematics and Physics (European Mathematical Society, 2008) p. 107

  35. J.W. Gibbs, Elementary principles in statistical mechanics, Collected works, Vol. II (New Haven, 1948)

  36. Y.L. Klimontovich, Zh. Eksp. Teor. Fiz. 33, 928 (1958) (Sov. Phys. JETP 6

    Google Scholar 

  37. Y.L. Klimontovich, Kinetic Theory of nonideal gases and nonideal plasmas (Nauka, Moscow, 1975 and Pergamon Press, 1982)

  38. Y.L. Klimontovich, Statistical theory of open systems, Vol. I (Janus, Moscow, 1995 and Kluwer, Dordrecht, 1998)

  39. P. Nicolini, M. Tessarotto, Phys. Plasmas 13, 052901 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  40. C. Cremaschini, M. Tessarotto, Phys. Rev. E 87, 032107 (2013)

    Article  ADS  Google Scholar 

  41. R. Illner, M. Pulvirenti, Transp. Th. Stat. Phys. 16, 997 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  42. K.C. Leptos, J.S. Guasto, J.P. Gollub, A.I. Pesci, R.E. Goldstein, Phys. Rev. Lett. 103, 198103 (2009)

    Article  ADS  Google Scholar 

  43. F.G. Woodhouse, R.E. Goldstein, Phys. Rev. Lett. 109, 168105 (2012)

    Article  ADS  Google Scholar 

  44. J.M. Montanero, V. Garzó, A. Santos, J.J. Brey, J. Fluid Mech. 389, 391 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. C.-H. Lee, C.-J. Huang, Phys. Fluids 24, 073303 (2012)

    Article  ADS  Google Scholar 

  46. G.P. Bewley, K.R. Sreenivasan, D.P. Lathrop, Exp. Fluids 44, 887 (2008)

    Article  Google Scholar 

  47. Marco Tessarotto, Claudio Cremaschini, Massimo Tessarotto, Physica A 388, 3737 (2009)

    Article  MathSciNet  Google Scholar 

  48. Massimo Tessarotto, Claudio Asci, Claudio Cremaschini, Alessandro Soranzo, Gino Tironi, Eur. Phys. J. Plus 127, 36 (2012)

    Article  Google Scholar 

  49. C. Cremaschini, M. Tessarotto, Physica A 392, 3962 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Pozzo, M. Tessarotto, Phys. Plasmas 3, 2255 (1996)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Cremaschini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tessarotto, M., Cremaschini, C. Modified BBGKY hierarchy for the hard-sphere system. Eur. Phys. J. Plus 129, 243 (2014). https://doi.org/10.1140/epjp/i2014-14243-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14243-7

Keywords

Navigation