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Abstract. The use of bistable laminates is a potential approach to realize more broadband piezoelectric
based energy harvesting systems. Based on the experimental time series of a bistable laminate plate we have
examined its dynamic response. The system was subjected to harmonic excitations showing the existence
of single well and snap-through vibrations of periodic and chaotic character. To identify the dynamics of
the system response we examine the frequency spectrum, phase portraits and multi-scaled entropy. It is
observed that the composite multiscale entropy analysis can be used to identify complexity within the
dynamic response successfully.

1 Introduction

With the recent increase in the use of wireless sensor networks and electronics requiring a portable and autonomous
energy source, energy harvesting devices have been developed in an attempt to convert ambient vibrations to electrical
energy via electrostatic generation, electromagnetic induction, and the piezoelectric effect [1,2]. The general need is
to harvest electrical energy from waste mechanical energy in the form of ambient vibrations, which generates an
alternating voltage using a piezoelectric material. These materials are of interest due to their higher strain energy
densities compared to electrostatic and electromagnetic systems, and the simplicity and solid-state nature of the strain
energy to electrical energy conversion [3]. For practical applications the alternating voltage is converted to a stable
rectified voltage through an AC-DC converter and is stored in a battery or capacitor so that it can be subsequently
used to power a low-power device, such as a wireless sensor network for structural health monitoring.

In some cases the mechanical vibration to be harvested is of a specific frequency, e.g. a motor rotating at a
fixed speed, and a resonant based harvesting system in appropriate ambient conditions. However, in many cases the
vibration consists of a range of frequencies, such as those on railway carriages [4] or other forms of transport [5,6].
It has been reported that introducing a nonlinear stiffness can lead to an improvement of the frequency bandwidth
of the harvester [7]. As a result, a variety of approaches for incorporating nonlinearity in the stiffness of energy
harvesters have been considered, most notably by designing bistable harvesters with two distinct energy wells [8–11].
One recent approach is to utilise the structural bistability of asymmetric composite laminates. This was initially
explored by Arrieta et al. [12] who employed a piezoelectric element attached to the surface of a bistable laminate
with an asymmetric stacking sequence, exploiting the inherent bistability which can be designed in this specific family
of laminated plates [13]. For energy harvesting [14] when a flexible piezoelectric material is attached to the bistable
laminate surface it can generate power by repeated straining as it experiences snap-through from each stable state as
a result of mechanical vibrations. Experimentally, such harvesting devices have been shown to exhibit high levels of
power extraction over a wide range of frequencies when harmonically excited from a central mounting [15], with scope
for improved power generation through changes in the geometry highlighted.

In the present work we use an electro-mechanical system to generate mechanical vibrations leading to snap-through
of the laminate between its two stable states. Such system can demonstrate a frequency broad-band effect of voltage
output. The present motivation is the ability to identify the bistable, mechanical resonator response such as single well
oscillations, continuous snap-through between stable states or chaotic or periodic snap-through behavior [15]. This
information could be used to optimize the ambient energy harvesting.
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Fig. 1. (a) Stable shapes of a 190 mm×190 mm [0/90]T bistable laminate plate, and (b) experimental setup showing mechanical
shaker attachment. A square CFPR laminate is coupled to smaller square piezoelement (MFC, Micro-Fibre-Composite) but the
output voltage is not measured in this experiment.

Table 1. Statistics of the experimental results (figs. 2(a)–(c)).

Case Excitation frequency Input of acceleration St. dev. of the corner displacement St. dev. of the corner velocity
[Hz] [g] [mm] [m/s]

(a) 58 3 1.53 0.68

(b) 55 5.5 4.25 1.07

(c) 55 5.7 4.11 1.04

2 Experimental setup and results

The experimental system is presented in fig. 1. A square [0/90]T carbon fibre reinforced laminate is considered as
the basis for developing a broadband energy harvesting device. The laminate measures 190mm by 190mm and is
made from M21/T800 CFRP prepreg material. A single piezoelectric Macro Fiber Composite (MFC) layer (M8585-
P2, 85mm × 85mm) is bonded to the laminate surface. The laminate is mounted to the electrodynamic shaker (LDS
V455) at its centre. Under kinematic excitation the laminate plate can show different responses which are recordered
by laser vibrometer (Polytec PSV-400-M4 with VD-09 decoder) at one of the plate corners.

The time series of three characteristic responses are plotted in fig. 2; the experimental conditions are in table 1.
It is possible to observe a single well mode case (fig. 2(a)) with small displacements, and snap-through with larger
displacements in regular (fig. 2(b)) and chaotic (fig. 2(c)) cases. The additional points show reduced sampling appro-
priate for calculation of the Multiscaled Entropy in the following section. The corresponding Fourier spectra for these
three conditions are presented in figs. 3(a)–(c). Note that the cases in figs. 3(a) and (b) are localized in frequencies
is expected for periodic vibrations, while fig. 3(c) shows a continuously smeared spectrum that is typical for chaotic
behaviour. Note that cases in figs. 3(b) and (c) are similar, as the periodic case is characterized by a large number
of peaks appearing in selected multiple frequencies. As expected for any experimental data, the time series is also
influenced by noise. However it is possible to detect single, albeit fairly broader lines, in the phase portraits in fig. 4.
Interestingly, in fig. 4(b) one can observe a multiple loop structure (based on smeared lines) which is consistent with
the multi frequency response (fig. 3(b)). Note that this pattern of lines is destroyed for the chaotic response (fig. 3(c)).

3 Composite multiscale entropy analysis

To improve understanding of the behaviour of complex systems that manifest themselves in nonlinear behaviour,
sample entropy analysis is becoming increasingly more popular [16–22]. This method provides, for measured signals, a
relative level of complexity of finite length time series. Unfortunately, there is no consensus of the complexity definition,
but it is combined with “meaningful structural richness” [23] contained over multiple spatio-temporal correlations.

The concept of multi-scale entropy (MSE) [18–22] is based on the coarse-graining procedure that uses a coarse-
grained time series, as an average of the original data points within nonoverlapping windows by increasing the scale
factor τ according to formula (eq. (1)):

y
(τ)
j =

1
τ

jτ∑

i=(j−1)τ+1

xi, (1)
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Fig. 2. Time series of experimental results, for a single corner point mass, corresponding to single well mode case (a), and snap-
through buckling: regular (b), chaotic (c) cases. The red points plotted along the time series show reduced sampling appropriate
for calculation of the multiscaled entropy.

where x is a raw one-dimensional time series x = {x1, x2, . . . , xN}. In this approach for each scale factor τ , the MSE
calculation based on the time series of the coarse-grained y

(τ)
j :

MSE(x, τ,m, r) = SampEn
(
y(τ)

1 ,m, r
)

. (2)

where m = 2 is the pattern length and r is the similarity criterion and is usually chosen to be r < σ [20], here σ is the
standard deviation of the original time series.

To estimate SampEn(y(τ)
1 ,m, r) from eq. (2) (see also fig. 5) we count the number of vector pairs denoted by y1(i)

and y1(j) in the time series of length m and m + 1 having distance d[y1(i), y1(j)] < r. We denote them by Nm and
Nm+1, respectively. Finally, we define the sample entropy to be [17]

SampEn
(
y(τ)

1 ,m, r
)

= − log
Nm+1

Nm
. (3)

Strictly speaking, it is the minus of the logarithm of the conditional probability that two sequences with a tolerance
r form points that remain within r of each other at the next point.

Continuing these research efforts Wu et al. [24] introduced the concept of a composite multi-scale entropy (CMSE),
which for higher scale factor provides entropy more reliably than the usual multi-scale entropy by including multiple
combinations of neighbour points. The prescribed algorithm for CMSE calculations is formula (eq. (4)):

CMSE(x, τ,m, r) =
1
τ

τ∑

k=1

SampEn
(
y(τ)

k ,m, r
)

. (4)
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Fig. 3. Fourier spectra of the full measured time series for three different cases. The cases in panels (a)–(c) correspond to
fig. 2(a)–(c).

The algorithm of the composite multi-scale entropy is presented in fig. 5. In the present paper the CMSE is applied
for real signals reporting a different behaviour of the system characterized by the time series in fig. 2. The results
of composite multi-scale entropy calculation are provided for several similarities r for different CMSE values with
increasing scale factor τ . The existence of higher values of CMSE corresponds to the existence of more complexity
within the analysed signal. It can be noticed that there is a variation in the irregularity of the system as a different τ
is chosen. These results are able to confirm the validity of others analysis reported in the paper [25] by means of the
recurrence plots at decomposed signal modes.

The results of the CMSE for m = 2 are presented in fig. 6. Note that the smallest value of CMSE and also its
smallest oscillations are reached for the largest similarity factor r. On examination of figs. 6(a) and (b) we observe
that in various regions of scale factor, small and large limits of similarity factor r may cause the CMSE to occasionally
approach to zero. For relatively large r (r = σx - blue line) this tendency is governed by the period of oscillations
that account for strong averaging. Consequently, the effective (coarse-grained) sequence is averaged out for the certain
scale factor, τ � 15. The regular-periodic solutions (figs. 6(a) and (b)) show larger fluctuations of CMSE with frequent
decreases to small values. Interestingly, reaching fairly small, almost nodal value is realized for r = 0.01σx. This is
a signature that the system is characterised by specific periods (see also figs. 3(a) and (b)). On the other hand, in
the chaotic (fig. 6(c)) case, we observe a monotonic substantial increase of the CMSE values with decreasing r which
is typical for a chaotic response [26]. The slightly decreasing trend of CMSE against the scale factor r indicates long
range correlated noise [18] which could be interpreted as an effect of chaotic behaviour. This is the principal result
of our investigations. Clearly, the CMSE approach enables to distinguish the chaotic solution using the criterion of
the finite entropy value in the limit of small similarity factor r. The ability to detect the onset of snap-through of
the bistable laminate in a chaotic or continuous (repeatable) manner is of importance to understand the complex
dynamics of nonlinear harvesting systems and ultimately generate maximum power output for a given broadband
ambient vibration.
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Fig. 4. Phase portraits based on the reduced sampling corresponding to single well mode case (a), and snap-through: regular
(b), chaotic (c) cases.
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Fig. 5. The algorithm of composite multi-scale entropy.
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Fig. 6. Composite multiscale entropy CMSE results of the corner point displacement corresponding to small single well oscil-
lations (a), repeatable snap-through (b) and chaotic snap-through (c) cases for illustrated varied similarity factor r. Starting
from up to down curves: r = 0.01σx, 0.1σx, σx, respectively.

4 Conclusions

The use of bistable laminates is considered for piezoelectric based energy harvesting systems. Based on the experimental
time series of a bistable laminate plate we have examined its dynamic response. The examined system response is shown
to include different solutions, with the potential to be exploited in the harvesting device. To increase the efficiency of
the device one has to identify the wave dynamics along the plate and in the region of piezoelectric transducer. We
demonstrated that the multiscale entropy can be helpful in the response characterization. Using the simple approach
of a single point laser vibrometer measurement we note that the multiscale nature of the phenomenon is reflected in
the calculated entropy and this method (CMSE) could be used to identify the desired dynamic solution. Practically,
such a signal analysis approach can be used to identify dynamic modes and optimize an energy harvesting device
in the appropriate switching mechanism between solutions. Note that a single point laser measurement simplifies
the identification procedure. However, for better understanding of snap-through phenomena dynamics and response
identification we are planing perform more systematic experiments by a scanning vibrometer and apply the CMSE
concept to multi-point time series, by employing, e.g., the local maximum-entropy approximation schemes [27,28].
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