Skip to main content
Log in

Towards quantifying complexity with quantum mechanics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

While we have intuitive notions of structure and complexity, the formalization of this intuition is non-trivial. The statistical complexity is a popular candidate. It is based on the idea that the complexity of a process can be quantified by the complexity of its simplest mathematical model —the model that requires the least past information for optimal future prediction. Here we review how such models, known as \( \epsilon\)-machines can be further simplified through quantum logic, and explore the resulting consequences for understanding complexity. In particular, we propose a new measure of complexity based on quantum \( \epsilon\)-machines. We apply this to a simple system undergoing constant thermalization. The resulting quantum measure of complexity aligns more closely with our intuition of how complexity should behave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.N. Kolmogorov, Theor. Comput. Sci. 207, 387 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Ladyman, J. Lambert, K. Wiesner, Eur. J. Philos. Sci. 3, 33 (2013)

    Article  MATH  Google Scholar 

  3. J.P. Crutchfield, K. Young, Phys. Rev. Lett. 63, 105 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  4. C.R. Shalizi, J.P. Crutchfield, J. Stat. Phys. 104, 817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. C.-B. Li, H. Yang, T. Komatsuzaki, Proc. Natl. Acad. Sci. 105, 536 (2008)

    Article  ADS  Google Scholar 

  6. J.P. Crutchfield, D.P. Feldman, Phys. Rev. E 55, R1239 (1997) arXiv:9702191

    Article  ADS  Google Scholar 

  7. K. Wiesner, M. Gu, E. Rieper, V. Vedral, Proc. R. Soc. A: Math. Phys. Eng. Sci. 468, 4058 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. W.G. Rory Cerbus, arXiv:1403.5356 (2014)

  9. J.P. Crutchfield, Nat. Phys. 8, 17 (2012)

    Article  MathSciNet  Google Scholar 

  10. M. Gu, K. Wiesner, E. Rieper, V. Vedral, Nat. Commun. 3, 762 (2012)

    Article  ADS  Google Scholar 

  11. J.P. Crutchfield, Phys. D: Nonlinear Phenom. 75, 11 (1994)

    Article  ADS  MATH  Google Scholar 

  12. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne Thompson.

Additional information

Contribution to the Focus Point on “Quantum information and complexity” edited by S. Mancini, G. Marmo, S. Pascazio

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, R., R. Terno, D., Thompson, J. et al. Towards quantifying complexity with quantum mechanics. Eur. Phys. J. Plus 129, 191 (2014). https://doi.org/10.1140/epjp/i2014-14191-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14191-2

Keywords

Navigation