Skip to main content
Log in

The stability of a thin water layer over a rotating disk revisited

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The flow driven by a rotating disk of a thin fluid layer in a fixed cylindrical casing is studied by direct numerical simulation and experimental flow visualizations. The characteristics of the flow are first briefly discussed but the focus of this work is to understand the transition to the primary instability. The primary bifurcation is 3D and appears as spectacular sharp-cornered polygonal patterns located along the shroud. The stability diagram is established experimentally in a (Re, G plane, where G is the aspect ratio of the cavity and Re the rotational Reynolds number and confirmed numerically. The number of vortices scales well with the Ekman number based on the water depth, which confirms the existence of a Stewartson layer along the external cylinder. The critical mixed Reynolds number is found to be constant as in other rotating flows involving a shear-layer instability. Hysteresis cycles are observed highlighting the importance of the spin-up and spin-down processes. In some particular cases, a crossflow instability appears under the form of high azimuthal wave number spiral patterns, similar to those observed in a rotor-stator cavity with throughflow and coexists with the polygons. The DNS calculations confirm the experimental results under the flat free surface hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.J. Faller, J. Fluid Mech. 230, 245 (1991).

    Article  MATH  ADS  Google Scholar 

  2. B.E. Launder, S. Poncet, E. Serre, Annu. Rev. Fluid Mech. 42, 229 (2010).

    Article  ADS  Google Scholar 

  3. M. Ghil, P.L. Read, S.A. Smith, Astron. Geophys. 51, 28 (2010).

    Article  Google Scholar 

  4. B.M. Lewis, H.F. Hawkins, Bull. Am. Meteorol. Soc. 63, 1294 (1982).

    Article  ADS  Google Scholar 

  5. J. Sommeria, Courr. CNRS 77, 97 (1991).

    Google Scholar 

  6. A.C. Barbosa Aguiar, P.L. Read, R.D. Wordsworth, T. Salter, Y.H. Yamazaki, Icarus 206, 755 (2010).

    Article  ADS  Google Scholar 

  7. R. Hide, C.W. Titman, J. Fluid Mech. 29, 39 (1967).

    Article  ADS  Google Scholar 

  8. M. Rabaud, Y. Couder, J. Fluid Mech. 136, 291 (1983).

    Article  ADS  Google Scholar 

  9. J.M. Chomaz, M. Rabaud, C. Basdevant, Y. Couder, J. Fluid Mech. 187, 115 (1988).

    Article  ADS  Google Scholar 

  10. K. Bergeron, E.A. Coutsias, J.P. Lynov, A.H. Nielsen, J. Fluid Mech. 402, 255 (2000).

    Article  MATH  ADS  Google Scholar 

  11. F.V. Dolzhanskii, V.A. Krymov, D.Y. Manin, J. Fluid Mech. 241, 705 (1992).

    Article  ADS  Google Scholar 

  12. S.C. Abrahamson, J.K. Eaton, D.J. Koga, Phys. Fluids A 1, 241 (1989).

    Article  ADS  Google Scholar 

  13. J. Herrero, F. Giralt, J.A.C. Humphrey, Phys. Fluids 11, 88 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. R.F. Huang, M.K. Hsieh, Exp. Fluids 51, 1529 (2011).

    Article  Google Scholar 

  15. J.A. Van de Konijnenberg, A.H. Nielsen, J.J. Rasmussen, B. Stenum, J. Fluid Mech. 387, 177 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. J.M. Lopez, J.E. Hart, F. Marques, S. Kittelman, J. Shen, J. Fluid Mech. 462, 383 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. F. Moisy, O. Doaré, T. Pasutto, O. Daube, M. Rabaud, J. Fluid Mech. 507, 175 (2004).

    Article  MATH  ADS  Google Scholar 

  18. L. Tophøj, J. Mougel, T. Bohr, D. Fabre, Phys. Rev. Lett. 110, 194502 (2013).

    Article  ADS  Google Scholar 

  19. T.R.N. Jansson, M.P. Haspang, K.H. Jensen, P. Hersen, T. Bohr, Phys. Rev. Lett. 96, 174502 (2006).

    Article  ADS  Google Scholar 

  20. R. Bergmann, L. Tophøj, T.A.M. Homan, P. Hersen, A. Andersen, T. Bohr, J. Fluid Mech. 679, 415 (2011).

    Article  MATH  ADS  Google Scholar 

  21. G.H. Vatistas, H. Ait Abderrahmane, M.H.K. Siddiqui, Phys. Rev. Lett. 100, 174503 (2008).

    Article  ADS  Google Scholar 

  22. M. Amaouche, H. Ait Abderrahmane, G.H. Vatistas, Eur. J. Mech. B/Fluids 41, 133 (2013).

    Article  ADS  Google Scholar 

  23. S. Poncet, M.P. Chauve, J. Flow Vis. Image Process. 14, 85 (2007).

    Article  Google Scholar 

  24. L. Kahouadji, L. Martin-Witkowski, P. Le Quéré, Méc. Ind. 11, 339 (2010).

    Article  Google Scholar 

  25. L. Kahouadji, Analyse de stabilité linéaire d'écoulements tournants en présence de surface libre, PhD thesis, Université Pierre et Marie Curie - Paris VI (2011).

  26. L. Kahouadji, L. Martin-Witkowski, N. Peres, S. Poncet, P. Le Quéré, E. Serre, Primary bifurcation of a thin-layer flow driven by a rotating disk in a fixed open cylindrical cavity: flat free surface, in 4th International Symposium Bifurcations and instabilities in fluid dynamics (Barcelona, 2011).

  27. S. Poncet, Polygons on a rotating thin-water layer: a combined experimental and numerical approach, in Topical Problems of Fluid Mechanics (Prague, 2014).

  28. H.P. Greenspan, The Theory of Rotating Fluids (Cambridge University Press, 1968).

  29. S. Poncet, E. Serre, P. Le Gal, Phys. Fluids 21, 064106 (2009).

    Article  ADS  Google Scholar 

  30. N. Peres, S. Poncet, E. Serre, J. Comput. Phys. 231, 6290 (2012).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. S. Leibovich, K. Stewartson, J. Fluid Mech. 126, 335 (1983).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. H. Niino, N. Misawa, J. Atmos. Sci. 41, 1992 (1984).

    Article  ADS  Google Scholar 

  33. N. Schaeffer, P. Cardin, Phys. Fluids 17, 104111 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  34. K. Stewartson, J. Fluid Mech. 3, 17 (1957).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. S. Poncet, M.P. Chauve, Int. J. Fluid Mech. Res. 37, 343 (2010).

    Google Scholar 

  36. S. Poncet, M.P. Chauve, J. Fluid Mech. 545, 281 (2005).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Poncet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poncet, S. The stability of a thin water layer over a rotating disk revisited. Eur. Phys. J. Plus 129, 167 (2014). https://doi.org/10.1140/epjp/i2014-14167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14167-2

Keywords

Navigation