Skip to main content

Advertisement

Log in

Effects of superthermal electrons and negatively (positively) charged dust grains on dust-ion acoustic wave modulation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The modulational instability of dust-ion acoustic (DIA) waves is studied in an unmagnetized dusty plasma comprising arbitrarily charged dust particles, adiabatic fluid ions, and electrons satisfying a kappa (κ) distribution. By using the multiple space and time scales perturbation, a nonlinear Schrödinger (NLS) equation is derived, and then the existence along with the stability of wave packets are discussed in the parameter space of two oppositely charged dust and ion temperature over a range of values of electron superthermality. It is found that the transition from stable dark solitons to unstable bright ones shifts to the smaller wavelength regions in a way that depends on the increase of superthermality index κ. In this case, a narrower range (in spatial extension) of the envelope solitons is observed. It is also found that the instability growth rate reduces, due to the electron superthemality. Furthermore, positive dust concentration enhances the instability region, whereas more populations of negative dust grains may control or suppress one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Horanyi, D.A. Mendis, Astrophys. J 307, 800 (1986).

    Article  ADS  Google Scholar 

  2. T.G. Northrop, Phys. Scr. 45, 475 (1992).

    Article  ADS  Google Scholar 

  3. D.A. Mendis, M. Rosenberg, Annu. Rev. Astron. Astrophys. 32, 419 (1994).

    Article  ADS  Google Scholar 

  4. F. Verheest, Space Sci. Rev. 77, 267 (1996).

    Article  ADS  Google Scholar 

  5. P.K. Shukla, A.A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).

  6. M. Horanyi, G.E. Morfill, E. Grün, Nature 363, 144 (1993).

    Article  ADS  Google Scholar 

  7. M. Rosenberg, D.A. Mendis, IEEE Trans. Plasma Sci. 23, 177 (1995).

    Article  ADS  Google Scholar 

  8. M. Rosenberg, D.A. Mendis, D.P. Sheehan, IEEE Trans. Plasma Sci. 27, 239 (1999).

    Article  ADS  Google Scholar 

  9. T.E. Sherdan, J. Plasma Phys. 60, 17 (2002).

    ADS  Google Scholar 

  10. P.K. Shukla, V.P. Silin, Phys. Scr. 45, 508 (1992).

    Article  ADS  Google Scholar 

  11. A. Barkan, N. D’Angelo, R. Merlino, Planet Space Sci. 44, 239 (1996).

    Article  ADS  Google Scholar 

  12. A.A. Mamun R.A. Cairns, Phys. Rev. E 79, 055401 (2009).

    Article  ADS  Google Scholar 

  13. N.R. Kundu, A.A. Mamun, J. Plasma Phys. 78, 677 (2012).

    Article  ADS  Google Scholar 

  14. O. Rahman, A.A. Mamun, Phys. Plasmas 18, 083703 (2011).

    Article  ADS  Google Scholar 

  15. A.A. Mamun, P.K. Shukla, J. Plasma Phys. 77, 437 (2011).

    Article  ADS  Google Scholar 

  16. A.A. Mamun, Phys. Lett. A 372, 4610 (2008).

    Article  ADS  MATH  Google Scholar 

  17. A.A. Mamun, P.K. Shukla, B. Eliasson, Phys. Rev. E 80, 046406 (2009).

    Article  ADS  Google Scholar 

  18. C.R. Choi, D.Y. Lee, Y.H. Kim, N.C. Lee, Phys. Plasmas 16, 043701 (2009).

    Article  ADS  Google Scholar 

  19. P.A. Robinson, Rev. Mod. Phys. 69, 507 (1997).

    Article  ADS  Google Scholar 

  20. A.P. Misra, P.K. Shukla, Phys. Plasmas 18, 042308 (2011).

    Article  ADS  Google Scholar 

  21. I. Kourakis, P.K. Shukla, Phys. Plasmas 10, 3459 (2003).

    Article  ADS  Google Scholar 

  22. I. Kourakis, P.K. Shukla, Eur. Phys. J. D 28, 109 (2004).

    Article  ADS  Google Scholar 

  23. J.K. Xue, Phys. Lett. A 320, 226 (2003).

    Article  ADS  MATH  Google Scholar 

  24. H. Gharaee, S. Afghah, H. Abbasi, Phys. Plasmas 18, 032116 (2011).

    Article  ADS  Google Scholar 

  25. A.S. Bains, M. Tribeche, T.S. Gill, Phys. Plasmas 18, 022108 (2011).

    Article  ADS  Google Scholar 

  26. S. Sultana, I. Kourakis, Plasma Phys. Control. Fusion 53, 045003 (2011).

    Article  ADS  Google Scholar 

  27. N.S. Saini, I. Kourakis, Phys. Plasma 15, 123701 (2008).

    Article  ADS  Google Scholar 

  28. I. Kourakis, P.K. Shukla, J. Plasma Phys. 71, 185 (2005).

    Article  ADS  Google Scholar 

  29. A.A. Mamun, J. Plasma Phys. 59, 575 (1998).

    Article  ADS  Google Scholar 

  30. A.A. Mamun, N. Jahan, P.K. Shukla, J. Plasma Phys. 75, 413 (2009).

    Article  ADS  Google Scholar 

  31. A. Esfandari-Kalejahi, I. Kourakis, M. Akbari-MoghanJoughi, J. Plasma Phys. 76, 169 (2010).

    Article  ADS  Google Scholar 

  32. W.F. El-Taibany, R. Sabry, Phys. Plasmas 12, 082302 (2005).

    Article  ADS  Google Scholar 

  33. W.M. Moslem, W.F. El-Taibany, Phys. Plasmas 12, 122309 (2005).

    Article  ADS  Google Scholar 

  34. M. Tribeche, G. Boumezound, Phys. Plasma 15, 053702 (2008).

    Article  ADS  Google Scholar 

  35. N.N. Rao, P.K. Shukla, M.Y. Yu, Planet Space Sci. 38, 543 (1990).

    Article  ADS  Google Scholar 

  36. A. Barkan, R. Merlino, N. D’Angelo, Phys. Plasmas 2, 3563 (1995).

    Article  ADS  Google Scholar 

  37. D. Winske, S.P. Gary, M.E. Jones, M. Rosenberg, D.A. Mendis, V.W. Chow, Geophys. Res. Lett. 22, 2069 (1995).

    Article  ADS  Google Scholar 

  38. M.S. Alam, M.M. Masud, A.A. Mamun, Chin. Phys. B 22, 115202 (2013).

    Article  ADS  Google Scholar 

  39. M.S. Alam, M.M. Masud, A.A. Mamun, Plasma Phys. Rep. 39, 1011 (2013).

    Article  ADS  Google Scholar 

  40. S. Sultana, A.A. Mamun, Astrophys. Space Sci. 349, 229 (2014).

    Article  ADS  Google Scholar 

  41. V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968).

    Article  ADS  Google Scholar 

  42. D. Summers, R.M. Thorne, Phys. Fluids B 3, 1835 (1991).

    Article  ADS  Google Scholar 

  43. M.A. Hellberg, R.L. Mace, T.K. Baluku I. Kourakis, N.S. Saini, Phys. Plasmas 16, 094701 (2009).

    Article  ADS  Google Scholar 

  44. E. Marsch, S. Livi, Phys. Fluids 28, 1379 (1985).

    Article  ADS  MATH  Google Scholar 

  45. Z. Liu, J. Du, Phys. Plasmas 16, 123707 (2009).

    Article  ADS  Google Scholar 

  46. T. Taniuti, N. Yajima, Math. J. Phys. 10, 1369 (1969).

    Article  ADS  MathSciNet  Google Scholar 

  47. A. Jeffery, T. Kawahara, Asymptotic Methods in Nonlinear Wave Theory (Pitman Advenced Publishing Program, 1982).

  48. J.K. Xue, Commun. Theor. Phys. 40, 717 (2003).

    Google Scholar 

  49. T. Dauxois, M. Peyrard, Physics of Soliton (Cambridge University Press, Cambridge, 2006).

  50. R. Fedele, H. Schamel, Eur. Phys. J. B 27, 313 (2002).

    Article  ADS  Google Scholar 

  51. R. Fedele, H. Schamel, P.K. Shukla, Phys. Scr. 98, 18 (2002).

    Google Scholar 

  52. I. Kourakis, P.K. Shukla, Nonlinear Process Geophys. 12, 441 (2005).

    Article  ADS  Google Scholar 

  53. O. Havnes, J. Trøim, T. Blix, W. Mortensen, L.I. Næsheim, E. Thrane, T. Tønnesen, J. Geophys. Res. 101, 10839 (1996).

    Article  ADS  Google Scholar 

  54. T.S. Gill, A.S. Bains, N.S. Saini, C. Bedi, Phys. Lett. A 374, 3210 (2010).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ainejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ainejad, H., Mahdavi, M. & Shahmansouri, M. Effects of superthermal electrons and negatively (positively) charged dust grains on dust-ion acoustic wave modulation. Eur. Phys. J. Plus 129, 99 (2014). https://doi.org/10.1140/epjp/i2014-14099-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14099-9

Keywords

Navigation