Skip to main content
Log in

Pattern classification using maximally entangled quantum states (MES)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Pattern classifications have been performed by employing the method of Grover’s iteration on Bell’s MES and Singh-Rajput MES in a two-qubit system and it has been demonstrated that, for any pattern classification, in a two-qubit system the maximally entangled states of Singh-Rajput eigenbasis provide the most suitable choice of search states while, in no case, any of Bell’s states is suitable for such pattern classifications. Applying the method of Grover’s iterate on three different superpositions in a three-qubit system, it has been shown that the choice of exclusive superposition, as the search state, is the most suitable one for the desired pattern classifications based on Grover’s iterative search algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Feynman, Int. Theor. Phys. 26, 467 (1982).

    Article  MathSciNet  Google Scholar 

  2. P.W. Shor, Algorithms for Quantum Computation: Discrete Logarithm and Factoring, in Proceedings of the 35th Annual Symposium on Foundation of Computer Science, edited by Shafi Goldwasser (IEEE Computer Society Press, 1994) pp. 124--134.

  3. L.K. Grover, A Fast Quantum Mechanical Algorithm for Data Base Search, in Proceedings of the 28th Annual ACM Symposium on Theory of Computing, Philadelphia, Pennsylvania (ACM Press, 1996) pp. 212--221.

  4. D. Simon, SIAM J. Comput. 26, 1474 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Ventura, T. Martinez, Found. Phys. Lett. 12, 547 (1999).

    Article  MathSciNet  Google Scholar 

  6. M. Zak, Inf. Sci. 128, 199 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  7. N.H. Bshouty, J. Jackson, Learning DNF Over Uniform Distribution Using Quantum Orc, in Proceedings of the 8th Annual Conference On Quantum Learning Theory (ACM Press, 1995) pp. 118--127.

  8. S.S. Li, Y.B. Huang, Int. J. Quantum Inf. 6, 561 (2008).

    Article  MATH  Google Scholar 

  9. S.S. Li, Y.Y. Nie, Z.H. Hong, X.J. Yi, Y.B. Huang, Commun. Theor. Phys. 50, 633 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  10. Y.B. Huang, S.S. Li, Y.Y. Nie, Int. J. Theor. Phys. 48, 95 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  11. S.S. Li, Int. J. Theor. Phys. 51, 724 (2012).

    Article  MATH  Google Scholar 

  12. Z.S. Wang, C. Wu, X.L. Feng, L.C. Kwek, C.H. Lai, C.H. Oh, V. Vedral, Phys. Rev. A 76, 044303 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  13. Z.S. Wang, Phys. Rev. A 79, 024304 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Narayanan, T. Meneer, Inf. Sci. 128, 231 (2000).

    Article  MATH  Google Scholar 

  15. E.C. Behrman, L.R Nash, J.E. Sleck, V.G. Chandrashekhar, S.R. Skinner, Inf. Sci. 128, 257 (2000).

    Article  MATH  Google Scholar 

  16. D. Ventura, T. Martinez, Inf. Sci. 124, 273 (2000).

    Article  MathSciNet  Google Scholar 

  17. A. Ezkov, A. Nifanava, D. Ventura, Inf. Sci. 128, 271 (2000).

    Article  Google Scholar 

  18. J. Howell, J. Yeazell, D. Ventura, Phys. Rev. A 62, 042303 (2000).

    Article  ADS  Google Scholar 

  19. D. Ventura, T. Martinez, Found. Phys. Lett. 12, 547 (1999).

    Article  MathSciNet  Google Scholar 

  20. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 84, 4729 (2000).

    Article  ADS  Google Scholar 

  21. D.S. Naik, C.G. Peterson, A.G. White, A.J. Burglund, P.G. Kwiat, Phys. Rev. Lett. 84, 4733 (2000).

    Article  ADS  Google Scholar 

  22. W. Tittel, J. Bendel, H. Zbinden, N. Gisin, Phys. Rev. Lett. 84, 4737 (2000).

    Article  ADS  Google Scholar 

  23. H.T. Tan, W.M. Zhang, G. Li, Phys. Rev. A 83, 032102 (2011).

    Article  ADS  Google Scholar 

  24. A. Smirne, H.P. Breuer, J. Piilo, B. Vacchini, Phys. Rev. A 84, 062114 (2010).

    Article  ADS  Google Scholar 

  25. G. Benenti, G. Casati, Phys. Rev. E 79, 025201R (2009).

    Article  ADS  Google Scholar 

  26. Manu P. Singh, B.S. Rajput, Int. J. Theor. Phys. 52, 4237 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  27. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).

    Article  ADS  Google Scholar 

  28. D. Ventura, On the Utility of Entanglement in Quantum Neural Computing, in Proceedings of the International Joint Conference on Neural Networks (2001) pp. 1565--1570.

  29. W.K. Wootters, Quantum Inf. Comput. 1, 27 (2001).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu Pratap Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, M.P., Rajput, B.S. Pattern classification using maximally entangled quantum states (MES). Eur. Phys. J. Plus 129, 57 (2014). https://doi.org/10.1140/epjp/i2014-14057-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14057-7

Keywords

Navigation