Skip to main content
Log in

The anticipated longitudinal forces by the Biot-Savart-Grassmann-Lorentz force law are in complete agreement with the longitudinal Ampère forces

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We explain, after 190 years to the knowledge of the author, the mechanism that creates longitudinal forces, using the Biot-Savart-Grassmann-Lorentz force law, which are found to be in complete agreement with the longitudinal forces predicted by the Ampère force law. We have also shown that a straight wire squared off at one end and pointed at the other can move in a mercury trough in the direction of the current flow by using both the Biot-Savart-Grassmann-Lorentz (B-S-G-L) and Ampère force laws. The direction of its motion is opposite to that of the pointed end. In addition we have found that the theoretically calculated velocity of the “submarine”, by using both the B-S-G-L and Ampère force laws, is in complete agreement, within the error, with the one experimentally measured by the experimenters. Therefore, it has been shown that the B-S-G-L force law can anticipate longitudinal forces, which is the only aspect that distinguished these two force laws, and, thus, now, both laws are in all aspects equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Graneau, Nature 295, 311 (1982).

    Article  ADS  Google Scholar 

  2. P. Graneau, J. Appl. Phys. 53, 6648 (1982).

    Article  ADS  Google Scholar 

  3. P.T. Pappas, Nuovo Cimento B 76, 189 (1983).

    Article  ADS  Google Scholar 

  4. P. Graneau, Phys. Lett. A 97, 253 (1983).

    Article  ADS  Google Scholar 

  5. J. Nasilowski, in Exploding wires, edited by W.G. Chace, H.K. Moore, Vol. 3 (Plenum, New York, 1964) p. 295.

  6. P. Graneau, J. Appl. Phys. 55, 2598 (1984).

    Article  ADS  Google Scholar 

  7. P. Graneau, IEEE Trans. Magn. 20, 444 (1984).

    Article  ADS  Google Scholar 

  8. K.H. Carpenter, IEEE Trans. Magn. 20, 2159 (1984).

    Article  ADS  Google Scholar 

  9. H. Aspden, Phys. Lett. A 107, 238 (1985).

    Article  ADS  Google Scholar 

  10. J.G. Ternan, J. Appl. Phys. 57, 1743 (1985).

    Article  ADS  Google Scholar 

  11. P. Graneau, P.N. Graneau, Appl. Phys. Lett. 46, 468 (1985).

    Article  ADS  Google Scholar 

  12. P. Graneau, J. Appl. Phys. 58, 3638 (1985).

    Article  ADS  Google Scholar 

  13. J.G. Ternan, J. Appl. Phys. 58, 3639 (1985).

    Article  ADS  Google Scholar 

  14. J.G. Ternan, Phys. Lett. A 115, 230 (1986).

    Article  ADS  Google Scholar 

  15. R. Azevedo et al., Phys. Lett. A 117, 101 (1986).

    Article  ADS  Google Scholar 

  16. P. Graneau, Phys. Lett. A 120, 77 (1987).

    Article  ADS  Google Scholar 

  17. L. Dragone, J. Appl. Phys. 62, 3477 (1987).

    Article  ADS  Google Scholar 

  18. P. Graneau, J. Appl. Phys. 62, 3006 (1987).

    Article  ADS  Google Scholar 

  19. V. Peoglos, J. Phys. D: Appl. Phys. 21, 1055 (1988).

    Article  ADS  Google Scholar 

  20. C. Christodoulides, Am. J. Phys. 56, 357 (1988).

    Article  ADS  Google Scholar 

  21. J. Nasilowski, IEEE Trans. Magn. 24, 3260 (1988).

    Article  ADS  Google Scholar 

  22. P. Graneau, J. Phys. D: Appl. Phys. 22, 1083 (1988).

    Article  ADS  Google Scholar 

  23. P. Graneau, IEEE Trans. Magn. 25, 3275 (1989).

    Article  ADS  Google Scholar 

  24. T.E. Phipps, T.E. Phipps, Jr., Phys. Lett. A 146, 6 (1990).

    Article  ADS  Google Scholar 

  25. M. Rambaut, J.P. Vigier, Phys. Lett. A 148, 229 (1990).

    Article  ADS  Google Scholar 

  26. M. Rambaut, Phys. Lett. A 154, 210 (1991).

    Article  ADS  Google Scholar 

  27. M. Rambaut, Phys. Lett. A 163, 335 (1992).

    Article  ADS  Google Scholar 

  28. M. Rambaut, Phys. Lett. A 164, 155 (1992).

    Article  ADS  Google Scholar 

  29. P. Graneau, N. Graneau, Phys. Lett. A 165, 1 (1992).

    Article  ADS  Google Scholar 

  30. P. Graneau, N. Graneau, Phys. Lett. A 174, 421 (1993).

    Article  ADS  Google Scholar 

  31. N. Graneau, IEEE Trans. Plasma Sci. 21, 701 (1993).

    Article  ADS  Google Scholar 

  32. P. Graneau, N. Graneau, IEEE Trans. Magn. 33, 4570 (1997).

    Article  ADS  Google Scholar 

  33. G. Cavalleri, G. Bettoni, E. Tonni, G. Spavieri, Phys. Rev. E 58, 2505 (1998).

    Article  ADS  Google Scholar 

  34. G. Cavalleri, E. Tonni, Phys. Rev. E 62, 7545 (2000).

    Article  ADS  Google Scholar 

  35. N. Graneau, T. Phipps, D. Roscoe, Eur. Phys. J. D 15, 87 (2001).

    Article  ADS  Google Scholar 

  36. P. Graneau, N. Graneau, Phys. Rev. E 63, 058601 (2001).

    Article  ADS  Google Scholar 

  37. G. Cavalleri, E. Tonni, G. Spavieri, Phys. Rev. E 63, 058602 (2001).

    Article  ADS  Google Scholar 

  38. G. Cavalleri, E. Cesaroni, E. Tonni, G. Spavieri, Eur. Phys. J. D 26, 221 (2003).

    Article  ADS  Google Scholar 

  39. G. Ajoy, Phys. Rev. E 74, 067602 (2006).

    Article  ADS  Google Scholar 

  40. G. Cavalleri, E. Cesaroni, E. Tonni, G. Spavieri, Eur. Phys. J. D 42, 407 (2007).

    Article  ADS  Google Scholar 

  41. A.M. Ampère, Memoires de l'Academie Royale des Sciences (1827) (Ampère's equation was submitted to the French Academy of Sciences in 1823) and A.M. Ampère, Memoires sur l'Electrodynamique, Vol. 1 (Gauthier-Villars, Paris, 1882) p. 25.

  42. P.G. Moyssides, IEEE Trans. Magn. 25, 4307 (1989).

    Article  ADS  Google Scholar 

  43. James Clerk Maxwell, Treatise on Electricity and Magnetism (Oxford, 1891) and Vol. 2 (New York, 1954) article 528, p. 175.

  44. P.G. Moyssides, IEEE Trans. Magn. 25, 4298 (1989).

    Article  ADS  Google Scholar 

  45. P.G. Moyssides, IEEE Trans. Magn. 25, 4313 (1989) and G. Diamantakos, G. Stratakis, PhD thesis (National Technical University of Athens, 1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Moyssides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moyssides, P.G. The anticipated longitudinal forces by the Biot-Savart-Grassmann-Lorentz force law are in complete agreement with the longitudinal Ampère forces. Eur. Phys. J. Plus 129, 34 (2014). https://doi.org/10.1140/epjp/i2014-14034-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14034-2

Keywords

Navigation