Skip to main content
Log in

An analogy between macroscopic and microscopic systems for Maxwell's equations in higher dimensions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, Maxwell's equations are discussed for macroscopic and microscopic systems by obtaining them from free and bound charge and current densities. In addition to electric and magnetic fields, the polarization and magnetization vectors are defined by the hyperbolic octonion basis. Finally, by introducing the hyperbolic octonionic field equation, for the first time, the hyperbolic octonionic source equation is represented in a simple, useful and elegant manner in terms of free charge, free and bound current densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.H. Conway, D. Smith, On Quaternions Octonions: Their Geometry, Arithmethic Symmetry (A.K. Peters Ltd., Canada, 2003)

  2. S. Okubo, Introduction to Octonion and Other Non-Associative Algebras in Physics (Cambridge University Press, Cambridge, 1995)

  3. F. Gürsey, C.H. Tze, On The Role of Division, Jordan and Related Algebras in Particle Physics (World Scientific, USA, 1996)

  4. B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics (World Scientific, Singapore, 1989)

  5. J.C. Baez, Bull. Amer. Math. Soc. 39, 145 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Carmody, Appl. Math. Comput. 28, 47 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Carmody, Appl. Math. Comput. 84, 27 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Imaeda, M. Imaeda, Appl. Math. Comput. 115, 77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Musés, Appl. Math. Comput. 3, 211 (1976)

    Article  Google Scholar 

  10. C. Musés, Appl. Math. Comput. 4, 45 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Musés, Appl. Math. Comput. 60, 25 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. V. Majerník, Adv. Appl. Clifford Algebras 9, 119 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. V. Majerník, M. Nagy, Lett. Nuovo Cimento 16, 265 (1976)

    Article  MathSciNet  Google Scholar 

  14. A. Gamba, Nuovo Cimento A 111, 293 (1998)

    ADS  Google Scholar 

  15. M. Gogberashvili, J. Phys. A: Math. Gen. 39, 7099 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. T. Tolan, K. Özdaş, M. Tanişli, Nuovo Cimento B 121, 43 (2006)

    ADS  Google Scholar 

  17. M. Tanişli, M.E. Kansu, J. Math. Phys. 52, 053511 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  18. A.M. Shaarawi, Found. Phys. 30, 1911 (2000)

    Article  MathSciNet  Google Scholar 

  19. C. Cafaro, S.A. Ali, Adv. Appl. Clifford Algebras 17, 23 (2006)

    Article  MathSciNet  Google Scholar 

  20. V.L. Mironov, S.V. Mironov, J. Math. Phys. 50, 012901 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Ulrych, Phys. Lett. B. 633, 631 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. S. Demir, M. Tanişli, Int. J. Theor. Phys. 51, 1239 (2012)

    Article  MATH  Google Scholar 

  23. J. Köplinger, Appl. Math. Comput. 188, 942 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. J. Köplinger, Appl. Math. Comput. 188, 948 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Tanişli, Europhys. Lett. 74, 569 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. S. Demir, M. Tanişli, Eur. Phys. J. Plus 126, 51 (2011)

    Article  Google Scholar 

  27. S. Demir, M. Tanişli, N. Candemir, Adv. Appl. Clifford Algebra 20, 547 (2010)

    Article  MATH  Google Scholar 

  28. S. Demir, M. Tanişli, Eur. Phys. J. Plus 126, 115 (2011)

    Article  Google Scholar 

  29. P. Nurowski, Acta Phys. Pol. A 116, 992 (2009)

    Google Scholar 

  30. P.S. Bisht, O.P.S. Negi, Int. J. Theor. Phys. 47, 3108 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. P.S. Bisht, S. Dangwal, O.P.S. Negi, Int. J. Theor. Phys. 47, 2297 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. A.S. Rawat, O.P.S. Negi, Int. J. Theor. Phys. 21, 738 (2012)

    Article  MathSciNet  Google Scholar 

  33. N. Candemir, M. Tanişli, K. Özdaş, S. Demir, Z. Naturforsch. 63a, 15 (2008)

    Google Scholar 

  34. M. Tanişli, M.E. Kansu, S. Demir, Eur. Phys. J. Plus 127, 69 (2012)

    Article  Google Scholar 

  35. S. Demir, Int. J. Theor. Phys. 52, 105 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Köplinger, Appl. Math. Comput. 182, 443 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. J.D. Jackson, Classical Electrodynamics, 3rd edition (John Wiley and Sons Inc., USA, 1999)

  38. D.J. Griffiths, Introduction to Electrodynamics, 3rd edition (Prentice Hall Inc., New Jersey, 1999)

  39. P.S. Bisht, Pushpa, O.P.S. Negi, Comm. Phys. 22, 111 (2012)

    Google Scholar 

  40. P.A.M. Dirac, Phys. Rev. 74, 817 (1948)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. P.A.M. Dirac, Proc. R. Soc. A 133, 60 (1931)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Emre Kansu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emre Kansu, M. An analogy between macroscopic and microscopic systems for Maxwell's equations in higher dimensions. Eur. Phys. J. Plus 128, 149 (2013). https://doi.org/10.1140/epjp/i2013-13149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13149-2

Keywords

Navigation