Skip to main content
Log in

Spiral motion formation in astrophysics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Motion of charged matter in gravitational and large-scale magnetic fields represents one of the most discussed topics in astrophysics. Here, one of the particular problems is addressed: the spiral motion of charged test particles as a possible mechanism for generation of weak toroidal magnetic field (magnetic loop) complementary to the prescribed large-scale one. To this aim, by contrast with the usually assumed scenario with particles circling in spirals along with the magnetic lines of a magnetic field dominating over gravity, the perturbed stable circular equatorial motion is discussed when the gravity of the central object plays at least a comparable role to electromagnetism. It is shown that the proper relation between the epicyclic and orbital frequencies necessary for the spiral motion cannot be easily achieved in the basic fields configuration within the Newtonian theory. The inclusion of the strong-field general relativistic effect, however, yields the desired conditions for particles to orbit in spirals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Cremaschini, Z. Stuchlík, Phys. Rev. E 87, 043113 (2013).

    Article  ADS  Google Scholar 

  2. T. Jacobson, T.P. Sotiriou, Phys. Rev. D 79, 065029 (2009).

    Article  ADS  Google Scholar 

  3. M. Kološ, Z. Stuchlík, Phys. Rev. D 82, 125012 (2010).

    Article  ADS  Google Scholar 

  4. Z. Stuchlík, M. Kološ, Phys. Rev. D 85, 065022 (2012).

    Article  ADS  Google Scholar 

  5. C. Cremaschini, M. Tessarotto, Phys. Plasmas 20, 012901 (2013).

    Article  ADS  Google Scholar 

  6. J.E. Howard, M. Horányi, G.R. Stewart, Phys. Rev. Lett. 83, 3993 (1999).

    Article  ADS  Google Scholar 

  7. J.E. Howard, M. Horányi, Geophys. Res. Lett. 28, 1907 (2001).

    Article  ADS  Google Scholar 

  8. H.R. Dullin, M. Horányi, J.E. Howard, Physica D 171, 178 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. B.W. Carroll, D.A. Ostlie, An Introduction to Modern Astrophysics (Addison-Wesley, New York, 1996).

  10. M.A. Abramowicz, W. Kluzniak, Astrophys. Space Sci. 300, 127 (2005).

    Article  ADS  Google Scholar 

  11. G. Török, Z. Stuchlík, Astron. Astrophys. 437, 775 (2005).

    Article  ADS  Google Scholar 

  12. Z. Stuchlík, P. Slaný, G. Török, Astron. Astrophys. 463, 807 (2007).

    Article  ADS  Google Scholar 

  13. V. Balek, J. Bičák, Z. Stuchlík, Bull. Astron. Inst. Czech. 40, 133 (1989).

    ADS  MATH  Google Scholar 

  14. Z. Stuchlík, J. Schee, Class. Quantum Grav. 27, 215017 (2010).

    Article  ADS  Google Scholar 

  15. Z. Stuchlík, J. Schee, Class. Quantum Grav. 30, 075012 (2013).

    Article  ADS  Google Scholar 

  16. A.N. Aliev, D.V. Galtsov, Gen. Relativ. Gravit. 13, 899 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  17. P. Bakala, E. Srámková, Z. Stuchlík, G. Török, Class. Quantum Grav. 27, 045001 (2010).

    Article  ADS  Google Scholar 

  18. O. Kopáček O, V. Karas, J. Kovář, Z. Stuchlík, Astrophys. J. 722, 1240 (2010).

    Article  ADS  Google Scholar 

  19. R.M. Wald, Phys. Rev. D 10, 1680 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Kovář.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovář, J. Spiral motion formation in astrophysics. Eur. Phys. J. Plus 128, 142 (2013). https://doi.org/10.1140/epjp/i2013-13142-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13142-9

Keywords

Navigation