Skip to main content
Log in

Analysis of F(R, T) gravity models through energy conditions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper is devoted to study the energy conditions in the F(R, T) gravity for a FRW universe with perfect fluid, where R is the Ricci scalar and T is the torsion scalar. We construct the general energy conditions in this theory and reduce them in F(R) as well as F(T) theory of gravity. Further, we assume some viable models and investigate bounds on their constant parameters to satisfy the energy condition inequalities. We plot some of the cases using present-day values of the cosmological parameters and also check the results under cosmographic analysis. It is interesting to mention here that the model F(R, T) = μR + νT satisfies the energy conditions for different ranges of the parameters as well as represents the phantom behavior of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nojiri, S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  2. B.C. Paul, P.S. Debnath, S. Ghose, Phys. Rev. D 79, 083534 (2009).

    Article  ADS  Google Scholar 

  3. G. Cognola et al., Phys. Rev. D 73, 084007 (2006).

    Article  ADS  Google Scholar 

  4. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010).

    ADS  Google Scholar 

  5. R.J. Yang, Eur. Phys. J. C 71, 1797 (2011).

    Article  ADS  Google Scholar 

  6. R. Ferraro, F. Fiorini, Phys. Lett. B 702, 75 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  7. K. Bamba et al., JCAP 01, 021 (2011).

    Article  ADS  Google Scholar 

  8. M. Sharif, S. Rani, Phys. Scr. 84, 055005 (2011).

    Article  ADS  Google Scholar 

  9. M. Sharif, S. Rani, Mod. Phys. Lett. A 26, 1657 (2011).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. T. Harko et al., Phys. Rev. D 84, 024020 (2011).

    Article  ADS  Google Scholar 

  11. A. De Felice, T. Suyama, T. Tanaka, Phys. Rev. D 83, 104035 (2011).

    Article  ADS  Google Scholar 

  12. G.Y. Qi, arXiv:1110.3449.

  13. S. Capozziello et al., Eur. Phys. J. C 72, 1908 (2012).

    Article  ADS  Google Scholar 

  14. L. Fabbri, S. Vignolo, Int. J. Theor. Phys. 51, 3186 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Myrzakulov, arXiv:1205.5266v2.

  16. R. Myrzakulov, Eur. Phys. J. C 72, 2203 (2012).

    Article  ADS  Google Scholar 

  17. R. Myrzakulov, Gen. Relativ. Gravit. 44, 3059 (2012).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. S. Chattopadhyay, arXiv.1208.3896.

  19. A. Pasqua, S. Chattopadhyay, I. Khomenko, Can. J. Phys. 91, 1 (2013).

    Google Scholar 

  20. N.M. García et al., Phys. Rev. D 83, 104032 (2011).

    Article  ADS  Google Scholar 

  21. J. Santos et al., Phys. Rev. D 76, 083513 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  22. D. Liu, M.J. Reboucas, Phys. Rev. D 86, 083515 (2012).

    Article  ADS  Google Scholar 

  23. F.G. Alvarenga et al., J. Mod. Phys. 4, 130 (2013).

    Article  Google Scholar 

  24. S. Kar, S. SenGupta, Pramana 69, 49 (2007).

    Article  ADS  Google Scholar 

  25. S. Carroll, Spacetime and Geometry: An Introduction to General Relativity (Addison Wesley, 2004).

  26. T.P. Sotirious, B. Li, J. Barrow, Phys. Rev. D 83, 104030 (2011).

    Article  ADS  Google Scholar 

  27. S. Capozziello et al., Phys. Rev. D 84, 043527 (2011).

    Article  ADS  Google Scholar 

  28. N.M. García et al., Conference Series 314, 012056 (2011).

    Article  Google Scholar 

  29. K. Atazadeh et al., Int. J. Mod. Phys. D 18, 1101 (2009).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. N.J. Poplawski, Class. Quantum Grav. 24, 3013 (2007).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. D. Rapetti et al., Mon. Not. R. Astron. Soc. 375, 1510 (2007).

    Article  ADS  Google Scholar 

  32. N.J. Poplawski, Phys. Lett. B 640, 135 (2006).

    Article  ADS  Google Scholar 

  33. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012).

    Article  ADS  Google Scholar 

  34. A. Aviles, A. Bravetti, S. Capozziello, O. Luongo, Phys. Rev. D 87, 044012 (2013).

    Article  ADS  Google Scholar 

  35. K. Bamba et al., Phys. Rev. D 85, 104036 (2012).

    Article  ADS  Google Scholar 

  36. A. Aviles, A. Bravetti, S. Capozziello, O. Luongo, Phys. Rev. D 87, 064025 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharif, M., Rani, S. & Myrzakulov, R. Analysis of F(R, T) gravity models through energy conditions. Eur. Phys. J. Plus 128, 123 (2013). https://doi.org/10.1140/epjp/i2013-13123-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13123-0

Keywords

Navigation