Skip to main content
Log in

Consistent Laplace sum rules for pseudoscalar glueball in the instanton vacuum model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Based on the instanton vacuum model of quantum chromodynamics, a systematical analysis on the Laplace sum rules for the 0−+ pseudoscalar glueball is carried out by using a semi-classical expansion. Besides taking the pure-classical contribution from instantons and the pertubative one into account, the contribution arising from the interaction (or the interference) between instantons and the quantum gluon fields is included in the correlation function; whereas the usual condensate contribution is understood to be a part of the instanton contribution, and turns out to be negligible. Assuming that the spectral function is saturated by the three lowest resonances (the mesons η and η′, and the pseudoscalar glueball G plus continuum, the corresponding subtracted and unsubtracted Laplace sum rules are constructed. After averaging over the instanton size according to a Gaussian-tail distribution, the optimal mass and the coupling constant of the lowest pseudoscalar glueball are predicted to be almost the same in various Laplace sum rules, and in agreement with the results of the lattice simulations as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Isgur, R. Kokoski, J. Paton, Phys. Rev. Lett. 54, 869 (1985).

    Article  ADS  Google Scholar 

  2. A.V. Anisovich, V.V. Anisovich, A.V. Sarantsev, Phys. Lett. B 359, 123 (1997).

    Article  ADS  Google Scholar 

  3. M. Albaladejo, J.A. Oller, Phys. Rev. Lett. 101, 252002 (2008).

    Article  ADS  Google Scholar 

  4. A. Patel, R. Gupta, G. Guralnik, G.W. Kilcup, S.R. Sharpe, Phys. Rev. Lett. 57, 1288 (1986).

    Article  ADS  Google Scholar 

  5. A. Vaccarino, D. Weingarten, Phys. Rev. D 60, 114501 (1999).

    Article  ADS  Google Scholar 

  6. X.F. Meng, G. Li et al., Phys. Rev. D 80, 114502 (2009).

    Article  ADS  Google Scholar 

  7. H. Forkel, Phys. Rev. D 71, 054008 (2005).

    Article  ADS  Google Scholar 

  8. J.P. Liu, D.H. Liu, J. Phys. G: Nucl. Part. Phys. 19, 373 (1993).

    Article  ADS  Google Scholar 

  9. T. Schafer, E.V. Shuryak, Phys. Rev. Lett. 75, 1707 (1995).

    Article  ADS  Google Scholar 

  10. L.S. Kisslinger, M.B. Johnson, Phys. Lett. B 523, 127 (2001).

    Article  ADS  Google Scholar 

  11. D. Harnett, T.G. Steele, V. Elias, Nucl. Phys. A 686, 393 (2001).

    Article  ADS  MATH  Google Scholar 

  12. H.Y. Cheng, H.N. Li, K.F. Liu, Phys. Rev. D 79, 014024 (2009).

    Article  ADS  Google Scholar 

  13. V. Crede, C.A. Meyer, Prog. Part. Nucl. Phys. 63, 74 (2009).

    Article  ADS  Google Scholar 

  14. V. Vento, Phys. Rev. D 73, 054006 (2006).

    Article  ADS  Google Scholar 

  15. G.’t Hooft, Phys. Rev. D 14, 3432 (1976).

    Article  ADS  Google Scholar 

  16. H. Forkel, Phys. Rev. D 64, 034015 (2001).

    Article  ADS  Google Scholar 

  17. H. Forkel, M.K. Banerjee, Phys. Rev. Lett. 71, 484 (1993).

    Article  ADS  Google Scholar 

  18. E.V. Shuryak, Nucl. Phys. B 203, 93 (1982).

    Article  ADS  Google Scholar 

  19. D.I. Dyakonov, V.Y. Petrov, Phys. Lett. B 147, 351 (1984).

    Article  ADS  Google Scholar 

  20. D.I. Dyakonov, V.Y. Petrov, Nucl. Phys. B 245, 259 (1984).

    Article  ADS  Google Scholar 

  21. J.P. Liu, P.X. Yang, J. Phys. G: Nucl. Part. Phys. 21, 75 (1995).

    Google Scholar 

  22. T. Schäfer, E.V. Shuryak, Rev. Mod. Phys. 70, 323 (1998).

    Article  ADS  Google Scholar 

  23. Z.Y. Zhang, J.P. Liu, Chin. Phys. Lett. 23, 2920 (2006).

    Article  ADS  Google Scholar 

  24. S.G. Wen, Z.Y. Zhang, J.P. Liu, Phys. Rev. D 82, 016003 (2010).

    Article  ADS  Google Scholar 

  25. A.L. Zhang, T.G. Steele, Nucl. Phys. A 728, 165 (2008).

    Article  ADS  Google Scholar 

  26. E.M. Ilgenfritz, M. Müller-Preussker, Nucl. Phys. B 184, 443 (1981).

    Article  ADS  Google Scholar 

  27. C. Michael, P.S. Spencer, Phys. Rev. D 52, 4691 (1995).

    Article  ADS  Google Scholar 

  28. E.V. Shuryak, Phys. Rev. D 52, 5370 (1995).

    Article  ADS  Google Scholar 

  29. D. Klammer, F. Schrempp, JHEP 06, 098 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  30. C. Kamp, G. Münster, Eur. Phys. J. C 17, 447 (2000).

    Article  ADS  MATH  Google Scholar 

  31. R. Millo, P. Faccioli, Phys. Rev. D 84, 034504 (2011).

    Article  ADS  Google Scholar 

  32. T. Schäfer, E.V. Shuryak, J.J.M. Verbaarschot, Nucl. Phys. B 412, 143 (1994).

    Article  ADS  Google Scholar 

  33. V.A. Novikov, M.A. Shifman, A.I. Vainsthein, V.I. Zakharov, Phys. Lett. B 86, 347 (1979).

    Article  ADS  Google Scholar 

  34. D. Asner, R.B. Mann, J.L. Murison, T.G. Steele, Phys. Lett. B 296, 171 (1992).

    Article  ADS  Google Scholar 

  35. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Phys. Rev. Lett. 79, 2184 (1997).

    Article  ADS  Google Scholar 

  36. B.V. Geshkenbein, B.L. Ioffe, Nucl. Phys. B 166, 340 (1980).

    Article  ADS  Google Scholar 

  37. B.L. Ioffe, A.V. Samsonov, Phys. At. Nucl. 63, 1527 (2000).

    Article  Google Scholar 

  38. E.V. Schuryak, Nucl. Phys. B 203, 93 (1982).

    Article  ADS  Google Scholar 

  39. H. Kikuchi, J. Wudka, Phys. Lett. B 284, 111 (1992).

    Article  ADS  Google Scholar 

  40. N.J. Dowrick, N.A. McDougall, Phys. Lett. B 285, 269 (1992).

    Article  ADS  Google Scholar 

  41. E.V. Shuryak, J.J.M. Verbaarschot, Phys. Rev. D 52, 295 (1995).

    Article  ADS  Google Scholar 

  42. A. Ringwald, F. Schrempp, Phys. Lett. B 459, 249 (1999).

    Article  ADS  Google Scholar 

  43. D. Esprin, R. Tarrach, Z. Phys. C 16, 77 (1982).

    Article  ADS  Google Scholar 

  44. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979).

    Article  ADS  Google Scholar 

  45. H. Leutwyler, A. Smilga, Phys. Rev. D 46, 5607 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  46. G.M. Prosperi, M. Raciti, C. Simolo, Prog. Part. Nucl. Phys. 58, 387 (2007).

    Article  ADS  Google Scholar 

  47. J. Beringer et al., Phys. Rev. D 86, 010001 (2012).

    Article  ADS  Google Scholar 

  48. C.J. Morningstar, M. Peardon, Phys. Rev. D 60, 034509 (1999).

    Article  ADS  Google Scholar 

  49. E. Witten, Nucl. Phys. B 149, 285 (1979).

    Article  ADS  Google Scholar 

  50. E. Witten, Nucl. Phys. B 156, 269 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  51. E. Witten, Phys. Rev. Lett. 81, 2862 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. I. Horváth et al., Phys. Rev. D 67, 011501 (2003).

    Article  ADS  Google Scholar 

  53. I. Horváth et al., Phys. Rev. D 68, 114505 (2003).

    Article  ADS  Google Scholar 

  54. E.M. Ilgenfritz et al., Phys. Rev. D 76, 034506 (2007).

    Article  ADS  Google Scholar 

  55. I. Horváth et al., Phys. Lett. B 612, 21 (2005).

    Article  ADS  Google Scholar 

  56. E.V. Shuryak, Nucl. Phys. B 193, 83 (1982).

    Article  ADS  Google Scholar 

  57. Y. Chen et al., Phys. Rev. D 73, 014516 (2006).

    Article  ADS  Google Scholar 

  58. A.B. Wakely, C.E. Carlson, Phys. Rev. D 45, 338 (1992).

    Article  ADS  Google Scholar 

  59. V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 191, 301 (1981).

    Article  ADS  Google Scholar 

  60. V. Mathieu, V. Vento, hep-ph/0910.0212v2.

  61. Y. Tsue, Prog. Theor. Phys. 128, 373 (2012).

    Article  ADS  MATH  Google Scholar 

  62. T. Gutsche, V.E. Lyubovitskij, M.C. Tichy, Phys. Rev. D 80, 014014 (2009).

    Article  ADS  Google Scholar 

  63. M. Majewski, V.A. Meshcheryakov, J. Phys. G: Nucl. Part. Phys. 38, 035008 (2011).

    Article  ADS  Google Scholar 

  64. N. Kochelev, D.p. Min, Phys. Lett. B 633, 283 (2006).

    Article  ADS  Google Scholar 

  65. E. Bagan, T.G. Steele, Phys. Lett. B 243, 413 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jueping Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xian, C., Wang, F. & Liu, J. Consistent Laplace sum rules for pseudoscalar glueball in the instanton vacuum model. Eur. Phys. J. Plus 128, 115 (2013). https://doi.org/10.1140/epjp/i2013-13115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13115-0

Keywords

Navigation