Skip to main content
Log in

Generalized Householder transformations for the complex symmetric eigenvalue problem

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present an intuitive and scalable algorithm for the diagonalization of complex symmetric matrices, which arise from the projection of pseudo-Hermitian and complex scaled Hamiltonians onto a suitable basis set of “trial” states. The algorithm diagonalizes complex and symmetric (non-Hermitian) matrices and is easily implemented in modern computer languages. It is based on generalized Householder transformations and relies on iterative similarity transformations TT′ = Q T T Q, where Q is a complex and orthogonal, but not unitary, matrix, i.e. Q T = Q −1 but Q +Q −1. We present numerical reference data to support the scalability of the algorithm. We construct the generalized Householder transformations from the notion that the conserved scalar product of eigenstates Ψ n and Ψ m of a pseudo-Hermitian quantum mechanical Hamiltonian can be reformulated in terms of the generalized indefinite inner product ∫ dx Ψ n (x, t) Ψ m (x, t), where the integrand is locally defined, and complex conjugation is avoided. A few example calculations are described which illustrate the physical origin of the ideas used in the construction of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U.D. Jentschura, A. Surzhykov, M. Lubasch, J. Zinn-Justin, J. Phys. A 41, 095302 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  2. U.D. Jentschura, A. Surzhykov, J. Zinn-Justin, Phys. Rev. Lett. 102, 011601 (2009)

    Article  ADS  Google Scholar 

  3. U.D. Jentschura, A. Surzhykov, J. Zinn-Justin, Ann. Phys. (N.Y.) 325, 1135 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. J. Zinn-Justin, U.D. Jentschura, J. Phys. A 43, 425301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  5. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40, 2201 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. C.M. Bender, G.V. Dunne, J. Math. Phys. 40, 4616 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. C.M. Bender, T.T. Wu, Phys. Rev. 184, 1231 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  9. C.M. Bender, T.T. Wu, Phys. Rev. Lett. 27, 461 (1971)

    Article  ADS  Google Scholar 

  10. J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, 3rd edition (Springer, Berlin, 2002)

  11. J.H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford University Press, Oxford, UK, 1965)

  12. J.H. Wilkinson, C.H. Reinsch, Linear Algbera. Handbook for Automatic Computation (Springer, Heidelberg, 1971)

  13. G. Golub, C.F. van Loan, Matrix Computations, 3rd edition (The Johns Hopkins University Press, Baltimore, MD, 1996)

  14. B.N. Parlett, The Symmetric Eigenvalue Problem (Prentice Hall, Englewood Cliffs, NJ, 1998)

  15. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, LAPACK Users’ Guide, 3rd edition (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999) ISBN 0-89871-447-8 (paperback)

  16. C.M. Bender, J. Brod, A. Refig, M.E. Reuter, J. Phys. A 37, 10139 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. I.C. Gohberg, P. Lancaster, L. Rodman, Matrices and Indefinite Scalar Products, in Oper. Theory Adv. Appl., Vol. 8 (Birkhäuser Verlag, Basel, 1983)

  18. N. Moiseyev, Phys. Rep. 302, 211 (1998)

    Article  ADS  Google Scholar 

  19. P. Arbenz, M.E. Hochstenbach, SIAM J. Sci. Comput. 25, 1655 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. J.G.F. Francis, Comp. J. 4, 265 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  21. J.G.F. Francis, Comp. J. 4, 332 (1962)

    Article  MathSciNet  Google Scholar 

  22. J.H. Wilkinson, Lin. Alg. Applic. 1, 409 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Wolfram, The Mathematica Book, 4th edition (Cambridge University Press, Cambridge, UK, 1999)

  24. C.G.J. Jacobi, Crelle’s J. 30, 51 (1846)

    Article  MATH  Google Scholar 

  25. W. Givens, J. Soc. Indust. Appl. Math. 6, 26 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  26. C.R. Handy, D. Bessis, Phys. Rev. Lett. 55, 931 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  27. C.R. Handy, D. Bessis, T.D. Morley, Phys. Rev. A 37, 4557 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  28. C.R. Handy, D. Bessis, G. Sigismondi, T.D. Morley, Phys. Rev. Lett. 60, 253 (1988)

    Article  ADS  Google Scholar 

  29. C.R. Handy, J. Phys. A 34, L271 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. C.R. Handy, D. Khan, X.Q. Wang, C.J. Tymczak, J. Phys. A 34, 5593 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. C.R. Handy, J. Phys. A 34, 5065 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. C.R. Handy, X.Q. Wang, J. Phys. A 34, 8297 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Z. Yan, C.R. Handy, J. Phys. A 34, 9907 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. V. Franceschini, V. Grecchi, H.J. Silverstone, Phys. Rev. A 32, 1338 (1985)

    Article  ADS  Google Scholar 

  35. U.D. Jentschura, Phys. Rev. A 64, 013403 (2001)

    Article  ADS  Google Scholar 

  36. E. Caliceti, J. Math. Phys. 44, 2026 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. D.H. Bailey, ACM Trans. Math. Soft. 21, 379 (1995) A Fortran-90 based multiprecision system, NASA Ames Tech. Rep. RNR-94-013

    Article  MATH  Google Scholar 

  38. D.H. Bailey, ACM Trans. Math. Soft. 21, 379 (1995)

    Article  MATH  Google Scholar 

  39. The gfortran compiler is available at http://hpc.sourceforge.net

  40. W. Pauli, Rev. Mod. Phys. 15, 175 (1943)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. K. Abhinav, A. Jayannavar, P.K. Panigrahi, Ann. Phys. (N.Y.) 331, 110 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. U.D. Jentschura, B.J. Wundt, Eur. Phys. J. C 72, 1894 (2012)

    Article  ADS  Google Scholar 

  43. U.D. Jentschura, B.J. Wundt, ISRN High Energy Phys. 2013, 374612 (2013)

    Article  Google Scholar 

  44. C.M. Bender, S. Boettcher, V.M. Savage, J. Math. Phys. 41, 6381 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. G. Fasshauer, The QR Algorithm, in lecture notes on 477/577 Numerical Linear Algebra/Computational Mathematics I, available at http://www.math.iit.edu/~fass/477577_Chapter_11.pdf

  46. P. Arbenz, The QR Algorithm, Chapter 3 of the lecture notes on Numerical Methods for Solving Large Scale Eigenvalue Problems, available at http://people.inf.ethz.ch/arbenz/ewp/Lnotes/chapter3.pdf

  47. L.E. Henderson, Testing eigenvalue software, PhD Thesis, University of Arizona, USA (1991) unpublished, available at http://arizona.openrepository.com/arizona/bitstream/10150/185744/1/azu_td_9213693_sip1_m.pdf

  48. C. Itzykson, J.B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980)

  49. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Perseus, Cambridge, Massachusetts, 1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. D. Jentschura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noble, J.H., Lubasch, M. & Jentschura, U.D. Generalized Householder transformations for the complex symmetric eigenvalue problem. Eur. Phys. J. Plus 128, 93 (2013). https://doi.org/10.1140/epjp/i2013-13093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13093-1

Keywords

Navigation