Skip to main content
Log in

Wounded quarks and multiplicity at relativistic ion colliders

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we propose a parameterization which is based on a phenomenological model involving the wounded quarks interactions for explaining the average charged particle multiplicity 〈n ch 〉, the central pseudo-rapidity density 〈(dn/dη)η=0〉 and the complete rapidity dependence of dn/dη in relativistic heavy-ion collider experiments. The model also interrelates nucleus-nucleus (A-A collisions with p-A and p-p interactions. Our parameterization rests on simple assumptions regarding the mean number of participating quarks and their average number of collisions. The results for 〈n ch 〉 and their variations with the mass number of colliding nuclei, center-of-mass energy (√s NN ) and collision centrality are well supported by the available experimental data. Finally we give the predictions from our model for A-A collisions at the Large Hadron Collider (LHC) and Compressed Baryonic Matter (CBM) experiments. Our results indicate the existence of a possible universal production mechanism for p-p, p -A and A-A collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.P. Singh, Phys. Rep. 236, 147 (1993).

    ADS  Google Scholar 

  2. W. Kittel, E.A. De Wolf, Soft Multihadron Dynamics (World Scientific, 2005) pp. 652.

  3. J. Manjavidze, A. Sissakian, Phys. Rep. 346, 1 (2001).

    ADS  Google Scholar 

  4. I.M. Dremin, J.W. Gary, Phys. Rep. 349, 301 (2001).

    ADS  MATH  Google Scholar 

  5. N.S. Amelin, N. Armesto, C. Pajares, D. Sousa, Eur. Phys. J. C 22, 149 (2001).

    ADS  Google Scholar 

  6. V. Topor Pop, M. Gyulassy, J. Barrette, C. Gale, S. Jeon, R. Bellwied, Phys. Rev. C 75, 014904 (2007).

    ADS  Google Scholar 

  7. N. Armesto et al., J. Phys. G 35, 054001 (2008).

    Google Scholar 

  8. H.J. Drescher, M. Hladik, S. Ostapchanko, T. Pierog, K. Werner, Phys. Rep. 350, 93 (2001).

    ADS  MATH  Google Scholar 

  9. Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005).

    ADS  Google Scholar 

  10. X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991).

    ADS  Google Scholar 

  11. I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, I. Arsene, K. Tywoniuk, PoS (high-pT physics 09), 023 (2009) arXiv:0903.0525 [hep-ph] (2009).

    ADS  Google Scholar 

  12. M. Mitrovski, T. Shuster, G. Graef, H. Petersen, M. Bleicher, Phys. Rev. C 79, 044901 (2009).

    ADS  Google Scholar 

  13. T. Sjostrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 0605, 026 (2006).

    ADS  Google Scholar 

  14. F.W. Bopp, J. Ranft, R. Engel, S. Roesler, Phys. Rev. C 77, 014904 (2008).

    ADS  Google Scholar 

  15. B.H. Sa, D. M. Zhou, B.G. Dong, Y.L. Yan, H.L. Ma, X.M. Li, J. Phys. G 36, 025007 (2009).

    ADS  Google Scholar 

  16. J. Dias de Deus, J.G. Milhano, Nucl. Phys. A 795, 98 (2007).

    ADS  Google Scholar 

  17. J.L. Albacete, Phys. Rev. Lett. 99, 262301 (2007).

    ADS  Google Scholar 

  18. J.L. Albacete, J. Phys. Conf. Ser. 270, 012052 (2011).

    ADS  Google Scholar 

  19. N. Armesto, C.A. Salgedo, U.A. Wiedemann, Phys. Rev. Lett. 94, 022002 (2005).

    ADS  Google Scholar 

  20. D. Kharzeev, E. Levin, M. Nardi, Nucl. Phys. A 747, 609 (2005).

    ADS  Google Scholar 

  21. R. Kuiper, G. Wolschin, Ann. Phys. 16, 67 (2007).

    Google Scholar 

  22. A.K. Choudhary, Phys. Lett. B 672, 126 (2009).

    ADS  Google Scholar 

  23. A. Capella, A. Kaidalov, J. Tran Thanh Van, Heavy Ion Phys. 9, 169 (1999).

    Google Scholar 

  24. A. El, Z. Xu, C. Greiner, Nucl. Phys. A 806, 287 (2008).

    ADS  Google Scholar 

  25. A. Bzdak, Acta Phys. Pol. B 39, 1977 (2008).

    ADS  Google Scholar 

  26. A. Bialas, M. Bleszynski, W. Czyz, Nucl. Phys. B 111, 461 (1976).

    ADS  Google Scholar 

  27. T.J. Humanic, Phys. Rev. C 79, 044902 (2009).

    ADS  Google Scholar 

  28. E.K.G. Sarkisyan, A.S. Sakharov, AIP Conf. Proc. 828, 35 (2006).

    ADS  Google Scholar 

  29. G. Wolschin, J. Phys. G 40, 045104 (2013) arXiv:1301.1868v1 [hep-ph] (2013).

    ADS  Google Scholar 

  30. ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 105, 252301 (2010).

    ADS  Google Scholar 

  31. W.-T. Deng, X.-N. Wang, R. Xu, Phys. Rev. C 83, 014915 (2011).

    ADS  Google Scholar 

  32. F.W. Bopp, R. Engel, J. Ranft, S. Roesler, arXiv:0706.3875 [hep-ph].

  33. E. Levin, A.H. Rezaeian, Phys. Rev. D 82, 054003 (2010).

    ADS  Google Scholar 

  34. D. Kharzeev, E. Levin, M. Nardi, arXiv:0707.0811 [hep-ph].

  35. N. Armesto, C.A. Salgado, U.A. Wiedemann, Phys. Rev. Lett. 94, 022002 (2005).

    ADS  Google Scholar 

  36. E.K.G. Sarkisyan, A.S. Sakharov, Eur. Phys. J. C 70, 533 (2010).

    ADS  Google Scholar 

  37. C.P. Singh, M. Shyam, S.K. Tuli, Phys. Rev. C 40, 1716 (1989).

    ADS  Google Scholar 

  38. M. Shyam, C.P. Singh, S.K. Tuli, Phys. Lett. B 164, 189 (1985).

    ADS  Google Scholar 

  39. C.P. Singh, M. Shyam, Phys. Lett. B 171, 125 (1986).

    ADS  Google Scholar 

  40. R.P. Feynman, Phys. Rev. Lett. 23, 1415 (1969).

    ADS  Google Scholar 

  41. J. Benecke, T.T. Chou, C.N. Yang, E. Yen, Phys. Rev. 188, 2159 (1969).

    ADS  Google Scholar 

  42. R. Hagedorn, Nucl. Phys. B 24, 93 (1970).

    ADS  Google Scholar 

  43. J.F. Gunion, G. Bertsch, Phys. Rev. D 25, 746 (1982).

    ADS  Google Scholar 

  44. PHOBOS Collaboration (B.B. back), nucl-ex/0301017.

  45. S. Jeon, V.T. Pop, M. Bleicher, Phys. Rev. C 69, 044904 (2004).

    ADS  Google Scholar 

  46. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 88, 022302 (2002).

    ADS  Google Scholar 

  47. A. Breakstone et al., Phys. Rev. D 30, 528 (1984).

    ADS  Google Scholar 

  48. G. Arnison et al., Phys. Lett. B 123, 108 (1983).

    ADS  Google Scholar 

  49. C. Albajar et al., Nucl. Phys. B 335, 261 (1990).

    ADS  Google Scholar 

  50. R.E. Ansorge et al., Z. Phys. C 43, 357 (1989).

    ADS  Google Scholar 

  51. G.J. Alner et al., Phys. Lett. B 160, 193 (1985).

    ADS  Google Scholar 

  52. G.J. Alner et al., Phys. Rep. 154, 247 (1987).

    ADS  Google Scholar 

  53. F. Abe et al., Phys. Rev. D 41, 2330 (1990).

    ADS  Google Scholar 

  54. J. Whitmore, Phys. Rep. 10, 273 (1974).

    ADS  Google Scholar 

  55. J.F. Grosse-Oetringhaus, K. Reygers, J. Phys. G 37, 083001 (2010).

    ADS  Google Scholar 

  56. P. Slattery, Phys. Rev. Lett. 29, 1624 (1972).

    ADS  Google Scholar 

  57. W. Thome et al., Nucl. Phys. B 129, 365 (1977).

    ADS  Google Scholar 

  58. E. Albini et al., Nuovo Cimento A 32, 101 (1976).

    ADS  Google Scholar 

  59. E. Fermi, Prog. Theor. Phys. 5, 570 (1950).

    MathSciNet  ADS  Google Scholar 

  60. C.-Y. Wong, Phys. Rev. C 78, 054902 (2008).

    ADS  Google Scholar 

  61. L.D. Landau, Izv. Akad. Nauk. SSSR 17, 51 (1953).

    Google Scholar 

  62. A.Z. Patashinskii, JETP Lett. 19, 338 (1974).

    ADS  Google Scholar 

  63. M. Ta-chung, Phys. Rev. D 15, 197 (1977).

    ADS  Google Scholar 

  64. V.V. Anisovich, V.M. Shekhter, Nucl. Phys. B 55, 455 (1973).

    ADS  Google Scholar 

  65. V.V. Anisovich et al., Nucl. Phys. B 133, 477 (1978).

    ADS  Google Scholar 

  66. A. Bialas et al., Acta Phys. Pol. B 8, 585 (1977).

    Google Scholar 

  67. G.V. Devidenko, N.N. Nikoloev, Sov. J. Nucl. Phys. 24, 402 (1976).

    Google Scholar 

  68. V.V. Anisovich, N.M. Kobrinsky, J. Nyiri, Yu.M. Shabelsky, Quark Model and High Energy Collisions (World scientific, Singapore, 2004).

  69. J. Nyiri, Int. J. Mod. Phys. A 18, 2403 (2003).

    ADS  MATH  Google Scholar 

  70. M. Shyam, S.K. Tuli, Z. Phys. C 29, 267 (1985).

    ADS  Google Scholar 

  71. M.L. Miller et al., Annu. Rev. Nucl. Part. Sci. 57, 205 (2007).

    ADS  Google Scholar 

  72. H. DeVries, C.W. DeJager, C. DeVries, At. Data Nucl. Data Tables 36, 495 (1987).

    ADS  Google Scholar 

  73. M. Basile et al., Nuovo Cimento A 66, 129 (1981).

    ADS  Google Scholar 

  74. M. Basile et al., Nuovo Cimento A 73, 329 (1983).

    ADS  Google Scholar 

  75. T.F. Huang et al., Z. Phys. C 29, 611 (1985).

    ADS  Google Scholar 

  76. X.N. Wang, M. Gyulassy, Phys. Rev. Lett. 86, 3496 (2001).

    ADS  Google Scholar 

  77. A. Capella, D. Sousa, Phys. Lett. B 511, 185 (2001).

    ADS  Google Scholar 

  78. K.J. Eskola, K. Kajantie, P.V. Ruuskanen, K. Tuominen, Nucl. Phys. B 570, 379 (2000).

    ADS  Google Scholar 

  79. J.-X. Sun, F.-H. Liu, E.-Q. Wang, Y. Sun, Z. Sun, Phys. Rev. C 83, 014001 (2011).

    ADS  Google Scholar 

  80. R. Nouicer et al., J. Phys. G 30, S1133 (2004).

    ADS  Google Scholar 

  81. B.I. Abelev et al., Phys. Rev. C 79, 034909 (2009).

    ADS  Google Scholar 

  82. K. Aamodt et al., Eur. Phys. J. C 68, 89 (2010).

    ADS  Google Scholar 

  83. K. Aamodt et al., Eur. Phys. J. C 65, 111 (2010).

    ADS  Google Scholar 

  84. V. Khachatryan et al., J. High Energy Phys. 2010, 02041 (2010).

    Google Scholar 

  85. V. Khachatryan et al., Phys. Rev. Lett. 105, 022002 (2010).

    ADS  Google Scholar 

  86. Thomas A. Trainor, Phys. Rev. C 80, 044901 (2009).

    ADS  Google Scholar 

  87. Thomas A. Trainor, David T. Kettler, Phys. Rev. C 83, 034903 (2011).

    ADS  Google Scholar 

  88. D. Kharzeev, M. Nardi, Phys. Lett. B 507, 121 (2001).

    ADS  Google Scholar 

  89. Thomas A. Trainor, arXiv:hep-ph/1210.5217.

  90. D. Kharzeev, E. Levin, Phys. Lett. B 523, 79 (2001).

    ADS  Google Scholar 

  91. S.Y. Li, X.N. Wang, Phys. Lett. B 527, 85 (2002).

    ADS  Google Scholar 

  92. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 65, 061901(R) (2002).

    ADS  Google Scholar 

  93. B. Alver et al., Phys. Rev. C 83, 024913 (2011).

    ADS  Google Scholar 

  94. G. Feofilov, A. Ivanov, J. Phys. Conf. Ser. 5, 230 (2005).

    ADS  Google Scholar 

  95. S.S. Adler et al., Phys. Rev. C 71, 034908 (2005).

    ADS  Google Scholar 

  96. B.B. Back et al., Phys. Rev. C 74, 021902(R) (2006).

    ADS  Google Scholar 

  97. J.L. Klay et al., Phys. Rev. C 68, 054905 (2003).

    ADS  Google Scholar 

  98. S.V. Afanasiev et al., Phys. Rev. C 66, 054902 (2002).

    ADS  Google Scholar 

  99. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 72, 031901 (2005).

    ADS  Google Scholar 

  100. K. Aamodt et al., Phys. Rev. Lett. 106, 032301 (2011).

    ADS  Google Scholar 

  101. S. Chatrchyan et al., J. High Energy Phys. 08, 141 (2011).

    ADS  Google Scholar 

  102. K.J. Eskola, V.J. Kolhinen, C.A. Salgado, Eur. Phys. J. C 9, 61 (1999).

    ADS  Google Scholar 

  103. Z.W. Lin, S. Pal, C.M. Ko, B.A. Li, B. Zhang, Phys. Rev. C 64, 011902 (2001).

    ADS  Google Scholar 

  104. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 74, 021901(R) (2006).

    ADS  Google Scholar 

  105. PHOBOS Collaboration (G.I. Veres et al.), Indian J. Phys. 85, 1015 (2011).

    Google Scholar 

  106. for the ALICE Collaboration (K. Gulbrandsen), arXiv:1302.0894v1 [nucl-ex].

  107. for the ALICE Collaboration (A. Toia et al.), J. Phys. G Nucl. Part. Phys. 38, 124007 (2011).

    ADS  Google Scholar 

  108. G. Wolschin, Phys. Lett. B 698, 411 (2011).

    ADS  Google Scholar 

  109. D.M. Rohrscheid, G. Wolschin, Phys. Rev. C 86, 024902 (2012).

    ADS  Google Scholar 

  110. CBM Report 2012-01, Nuclear Matter Physics at SIS-100, http://www.gsi.de/documents/Doc-2011-Aug-29-1.pdf.

  111. W. Cassing, E.L. Bratkovskaya, S. Juchem, Nucl. Phys. A 674, 249 (2000).

    ADS  Google Scholar 

  112. W. Busza, Acta. Phys. Pol. B 35, 2873 (2004).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwini Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Singh, B.K., Srivastava, P.K. et al. Wounded quarks and multiplicity at relativistic ion colliders. Eur. Phys. J. Plus 128, 45 (2013). https://doi.org/10.1140/epjp/i2013-13045-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13045-9

Keywords

Navigation