Skip to main content
Log in

Mesons condensate and Fermi momentum

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Quark-antiquark condensation has been investigated in the framework of the NJL model. Using the Fermi momentum of the particle as cut-off parameter the gap energy and coherence length for meson condensates have been studied. The Fermi momentum for the \(\left\langle {q\bar q} \right\rangle\) condensate has been extracted considering the coherence length ξ ∼ 1 fm. The results are compared with existing data. Some interesting observations are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961).

    Article  ADS  Google Scholar 

  2. U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991).

    Article  ADS  Google Scholar 

  3. D. Ebert et al., Fortschr. Phys. 37, 487 (1989).

    Article  Google Scholar 

  4. X.Y. Guo, arXiv:1205.0355 [hep-ph] (2012).

  5. Y. Jiang, arXiv:1104.0094 [hep-ph] (2011).

  6. M. Oertel, arXiv:9908475 [hep-ph] (2000).

  7. T. Inagaki et al., Phys. Rev. D 83, 034005 (2011).

    Article  ADS  Google Scholar 

  8. T. Schafer et al., Nucl. Phys. A 642, 45 (1998).

    Article  ADS  Google Scholar 

  9. S. Hands, D.N. Walters, arXiv:0211032 [hep-ph] (2002).

  10. C. Ratti et al., Phys. Rev. D 70, 054013 (2004).

    Article  ADS  Google Scholar 

  11. W. Florokowshi, Acta Phys. Pol. B 28, 2079 (1997).

    Google Scholar 

  12. D. Blaschke, arXiv:9812503 [hep-ph].

  13. D. Ebert, arXiv:9406220 [hep-ph].

  14. S.I. Kruglov, Act. Phys. Pol. B 21, 985 (1990).

    Google Scholar 

  15. V.A. Khodel, V.R. Shaginyan, JETP Lett. 51, 553 (1990).

    ADS  Google Scholar 

  16. G.S. Bali, arXiv:9809039 [hep-lat] (1998).

  17. M.N. Chernodub, arXiv:1201.2570 [hep-ph] (2012).

  18. H. Kiuchi, J. Phys. Stud. 11, 390 (2007).

    Google Scholar 

  19. M. Matsuzaki, Phys. Rev. D 62, 074014 (2000).

    Article  Google Scholar 

  20. H. Abuki, T. Hatsuda, Phys. Rev. D 65, 017501 (2000).

    Google Scholar 

  21. G. Sun, L. He, P. Zhuang, Phys. Rev. 75, 096004 (2004).

    Google Scholar 

  22. H. Abuki, arXiv:1003.0408 [hep-ph] (2010).

  23. K. Nawa, E. Nakano, H. Yabu, Phys. Rev. D 74, 034017 (2006).

    Article  ADS  Google Scholar 

  24. L. Tang, X.Q. Li, arXiv:1201.1531 [hep-ph] (2012).

  25. D.S. Hwang, C.S. Kim, W. Namgung, Z. Phys. C 69, 107 (1995).

    Article  Google Scholar 

  26. A.K. Rai et al., J. Phys. G Nucl. Part. Phys. 28, 2275 (2002).

    Article  ADS  Google Scholar 

  27. A. Bhattacharya et al., Eur. Phys. J. C 2, 671 (1998).

    ADS  Google Scholar 

  28. S. Pepin, arXiv:9912475 [hep-ph] (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chandra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, A., Bhattacharya, A. & Chakrabarti, B. Mesons condensate and Fermi momentum. Eur. Phys. J. Plus 128, 4 (2013). https://doi.org/10.1140/epjp/i2013-13004-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2013-13004-6

Keywords

Navigation