Skip to main content
Log in

Raman spectroscopy of Bacillus thuringiensis physiology and inactivation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The ability to detect spore contamination and inactivation is relevant to developing and determining decontamination strategy success for food and water safety. This study was conducted to develop a systematic comparison of nondestructive vibrational spectroscopy techniques (Surface-Enhanced Raman Spectroscopy, SERS, and normal Raman) to determine indicators of Bacillus thuringiensis physiology (spore, vegetative, outgrown, germinated and inactivated spore forms). SERS was found to provide better resolution of commonly utilized signatures of spore physiology (dipicolinic acid at 1006 cm−1 and 1387 cm−1) compared to normal Raman and native fluorescence indigenous to vegetative and outgrown cell samples was quenched in SERS experiment. New features including carotenoid pigments (Raman features at 1142 cm−1, 1512 cm−1) were identified for spore cell forms. Pronounced changes in the low frequency region (300 cm−1 to 500 cm−1) in spore spectra occurred upon germination and inactivation (with both free chlorine and by autoclaving) which is relevant to guiding decontamination and detection strategies using Raman techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.B. Morrow et al., Water Research 42, 5011 (2008)

    Article  Google Scholar 

  2. E.W. Rice et al., Appl. Environ. Microbiol. 71, 5587 (2005)

    Article  Google Scholar 

  3. L.J. Rose et al., Appl. Environ. Microbiol. 71, 566 (2005)

    Article  Google Scholar 

  4. R. Kort et al., Appl. Environ. Microbiol. 71, 3556 (2005)

    Article  Google Scholar 

  5. P. Setlow, Curr. Opini. Microbiol. 6, 550 (2003)

    Article  Google Scholar 

  6. P. Setlow, G. Primus, J. Biol. Chem. 250, 623 (1975)

    Google Scholar 

  7. L.X. Quang et al., Lab on a Chip 8, 2214 (2008)

    Article  Google Scholar 

  8. F. Yan, T. Vo-Dinh, Sens. Actuators B Chem. 121, 61 (2007)

    Article  Google Scholar 

  9. M.E. Hankus, D.N. Stratis-Cullum, P.M. Pellegrino, Enabling Technologies for Point and Remote Sensing of Chemical and Biological Agents Using Surface Enhanced Raman Scattering (SERS) Techniques, S.A.E.D. Directorate (Editor) (ARMY RESEARCH LAB: Adelphi, Maryland, 2009)

  10. L.M. Hornstra et al., Int. J. Food Microbiol. 116, 367 (2007)

    Article  Google Scholar 

  11. J.B. Morrow, K. Cole, Environ. Eng. Sci. 26, 993 (2009)

    Article  Google Scholar 

  12. P. Zhang et al., Appl. Environ. Microbiol. 76, 1796 (2010)

    Article  Google Scholar 

  13. W.H. Coleman et al., J. Bacteriol. 189, 8458 (2007)

    Article  Google Scholar 

  14. D.E. Cortezzo et al., J. Appl. Microbiol. 97, 838 (2004)

    Article  Google Scholar 

  15. M.F. Escoriza et al., J. Microbiol. Methods 66, 63 (2006)

    Article  Google Scholar 

  16. U. Neugebauer et al., Biopolymers 82, 306 (2006)

    Article  Google Scholar 

  17. I. Notingher et al., Biopolymers 72, 230 (2003).

    Article  Google Scholar 

  18. P. Rösch et al., Anal. Chem. 78, 2163 (2006).

    Article  Google Scholar 

  19. P. Rosch et al., Appl. Environ. Microbiol. 71, 1626 (2005).

    Article  Google Scholar 

  20. S.E.J. Bell, J.N. Mackle, N.M.S. Sirimuthu, Analyst 130, 545 (2005).

    Article  ADS  Google Scholar 

  21. A.A. Kolomenskii, H.A. Schuessler, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 61, 647 (2005).

    Article  ADS  Google Scholar 

  22. D. Pestov et al., Proc. Natl. Acad. Sci. 102, 14976 (2005).

    Article  ADS  Google Scholar 

  23. C.R. Yonzon et al., Talanta 67, 438 (2005).

    Article  Google Scholar 

  24. X. Zhang et al., J. Am. Chem. Soc. 127, 4484 (2005).

    Article  Google Scholar 

  25. S. Farquharson et al., Appl. Spectrosc. 58, 74A (2004).

    Article  Google Scholar 

  26. W.R. Premasiri et al., J. Phys. Chem. B 109, 312 (2005).

    Article  Google Scholar 

  27. M.L. Laucks et al., J. Aerosol Sci. 31, 307 (2000).

    Article  Google Scholar 

  28. L. Zeiri et al., Colloids Surf. A: Physicochem. Eng. Asp. 208, 357 (2002).

    Article  Google Scholar 

  29. S. Efrima, B.V. Bronk, J. Phys. Chem. B 102, 5947 (1998).

    Article  Google Scholar 

  30. A. Sengupta, M. Mujacic, E.J. Davis, Anal. Bioanal. Chem. 386, 1379 (2006).

    Article  Google Scholar 

  31. L. Zeiri, S. Efrima, J. Raman Spectrosc. 36, 667 (2005).

    Article  ADS  Google Scholar 

  32. M. Kahraman et al., Int. J. Environ. Anal. Chem. 87, 763 (2007).

    Article  Google Scholar 

  33. L. Zeiri et al., Appl. Spectrosc. 58, 33 (2004).

    Article  ADS  Google Scholar 

  34. D.L. Popham et al., J. Bacteriol. 178, 6451 (1996).

    Google Scholar 

  35. K. De Gussem et al., Spectrochim. Acta Part A 61, 2896 (2005).

    Article  ADS  Google Scholar 

  36. I. Notingher et al., Biopolymers 72, 230 (2003).

    Article  Google Scholar 

  37. R.M. Jarvis, A. Brooker, R. Goodacre, Faraday Disc. 132, 281 (2006).

    Article  ADS  Google Scholar 

  38. M. Baranska, W. Schütze, H. Schulz, Anal. Chem. 78, 8456 (2006).

    Article  Google Scholar 

  39. P. Carmona, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 36, 705 (1980).

    Article  ADS  Google Scholar 

  40. X. Zhang et al., J. Am. Chem. Soc. 127, 4484 (2005).

    Article  Google Scholar 

  41. L.H. Duc et al., FEMS Microbiol. Lett. 255, 215 (2006).

    Article  Google Scholar 

  42. R. Moeller et al., FEMS Microbiol. Ecol. 51, 231 (2005).

    Article  Google Scholar 

  43. S.L. Hoti, K. Balaraman, J. Gen. Microbiol. 139, 2365 (1993).

    Article  Google Scholar 

  44. D. Saxena et al., Curr. Microbiol. 44, 25 (2002).

    Article  Google Scholar 

  45. C. Mitchell et al., Appl. Environ. Microbiol. 52, 64 (1986).

    Google Scholar 

  46. L. Garrick-Silversmith, A. Torriani, J. Bacteriol. 114, 507 (1973).

    Google Scholar 

  47. A.D. Warth, J.L. Strominger, Proc. Natl. Acad. Sci. 64, 528 (1969).

    Article  ADS  Google Scholar 

  48. M. Plomp et al., Proc. Natl. Acad. Sci. 104, 9644 (2007).

    Article  ADS  Google Scholar 

  49. K.C. Schuster, E. Urlaub, J.R. Gapes, J. Microbiol. Methods 42, 29 (2000).

    Article  Google Scholar 

  50. J. Goral, V. Zichy, Spectrochim. Acta A 46, 253 (1990).

    Article  ADS  Google Scholar 

  51. S.O. Hashim et al., Enzym. Microbial Technol. 36, 139 (2005).

    Article  Google Scholar 

  52. G.J. Thomas Jr., Annu. Rev. Biophys. Biomol. Struct. 28, 1 (1999).

    Article  ADS  Google Scholar 

  53. G.J. Thomas Jr., Roles of Cations in the Structure, Stability and Condensation of DNA, in Spectroscopy of Biological Molecules, edited by T. Theophanides, J. Anastassapoulou, N. Fotopoulos (Kluwer Academic Publishers, Dordrecht, 1993) p. 39.

  54. P. Setlow, Environ. Mol. Mutagen. 38, 97 (2001).

    Article  Google Scholar 

  55. C. Nessi, M.J. Jedrzejas, P. Setlow, J. Bacteriol. 180, 5077 (1998).

    Google Scholar 

  56. M. Paidhungat et al., J. Bacteriol. 182, 5505 (2000).

    Article  Google Scholar 

  57. L. Kong et al., Anal. Chem. 82, 3840 (2010).

    Article  Google Scholar 

  58. P. Zhang, P. Setlow, Y. Li, Opt. Expr. 17, 16480 (2009).

    Article  ADS  Google Scholar 

  59. O.N. Shebanova, P. Lazor, J. Raman Spectrosc. 34, 845 (2003).

    Article  ADS  Google Scholar 

  60. K.W. Hukari et al., Electrophoresis 31, 2804 (2010).

    Article  Google Scholar 

  61. G.J. Dring, G.W. Gould, Biochem. Biophys. Res. Commun. 66, 202 (1975).

    Article  Google Scholar 

  62. Q. Weili, S. Krimm, J. Raman Spectrosc. 23, 517 (1992).

    Article  ADS  Google Scholar 

  63. Z.Q. Wen, J. Pharm. Sci. 96, 2861 (2007).

    Article  Google Scholar 

  64. C.C. Winterbourn, Biochim. Biophys. Acta 840, 204 (1985).

    Article  Google Scholar 

  65. C.L. Hawkins, D.I. Pattison, M.J. Davies, Amino Acids 25, 259 (2003).

    Article  Google Scholar 

  66. P. Setlow, J. Appl. Microbiol. 101, 514 (2006).

    Article  Google Scholar 

  67. C.L. Hawkins, D.I. Pattison, M.J. Davies, Biochem. J. 365, 605 (2002).

    Google Scholar 

  68. J. De Gelder et al., J. Raman Spectrosc. 38, 1133 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Morrow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrow, J.B., Almeida, J., Cole, K.D. et al. Raman spectroscopy of Bacillus thuringiensis physiology and inactivation. Eur. Phys. J. Plus 127, 151 (2012). https://doi.org/10.1140/epjp/i2012-12151-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12151-6

Keywords

Navigation