Skip to main content
Log in

Measurement of the cosmic ray energy spectrum using hybrid events of the Pierre Auger Observatory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The energy spectrum of ultra-high energy cosmic rays above 1018 eV is measured using the hybrid events collected by the Pierre Auger Observatory between November 2005 and September 2010. The large exposure of the Observatory allows the measurement of the main features of the energy spectrum with high statistics. Full Monte Carlo simulations of the extensive air showers (based on the CORSIKA code) and of the hybrid detector response are adopted here as an independent cross check of the standard analysis (Phys. Lett. B 685, 239 (2010)). The dependence on mass composition and other systematic uncertainties are discussed in detail and, in the full Monte Carlo approach, a region of confidence for flux measurements is defined when all the uncertainties are taken into account. An update is also reported of the energy spectrum obtained by combining the hybrid spectrum and that measured using the surface detector array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HiRes Collaboration (R. Abbasi et al.), Phys. Rev. Lett. 100, 101101 (2008).

    Article  ADS  Google Scholar 

  2. The Pierre Auger Collaboration, Phys. Lett. B 685, 239 (2010).

    Article  ADS  Google Scholar 

  3. The Pierre Auger Collaboration, Phys. Rev. Lett. 101, 061101 (2008).

    Article  Google Scholar 

  4. F. Salamida, for the Pierre Auger Collaboration, Proc. 32th ICRC 2011, Beijing, arXiv:1107.4809.

  5. Telescope Array Collaboration, submitted to Phys. Rev. Lett., arXiv:1205.5067v1.

  6. K. Greisen, Phys. Rev. Lett. 16, 748 (1966).

    Article  ADS  Google Scholar 

  7. G.T. Zatsepin, V.A. Kuz'min, Pis'ma Zh. Eksp. Teor. Fiz. 4, 114 (1966).

    Google Scholar 

  8. J. Linsley, Proc. 8th ICRC, Jaipur 4, 77 (1963).

    Google Scholar 

  9. M.A. Lawrence, R.J.O. Reid, A.A. Watson, J. Phys. G 17, 733 (1991).

    Article  ADS  Google Scholar 

  10. M. Nagano et al., J. Phys. G 18, 423 (1992).

    Article  ADS  Google Scholar 

  11. D.J. Bird et al., Phys. Rev. Lett. 71, 3401 (1993).

    Article  ADS  Google Scholar 

  12. A.M. Hillas, Cosmic Rays (Pergamon Press, Oxford, 1972).

  13. T. Wibig, A.W. Wolfendale, J. Phys. G 31, 255 (2005).

    Article  Google Scholar 

  14. A.M. Hillas, J. Phys. G 31, R95 (2005).

    Article  ADS  Google Scholar 

  15. A.M. Hillas, Cosmic Rays: Recent Progress and some Current Questions, arXiv:0607109.

  16. B. Peters, Nuovo Cimento 22, 800 (1961).

    Article  Google Scholar 

  17. A.M. Hillas, Phys. Lett. A 24, 677 (1967).

    Article  ADS  Google Scholar 

  18. G.R. Blumenthal, Phys. Rev. D 1, 1596 (1970).

    Article  ADS  Google Scholar 

  19. V. Berezinsky, A.Z. Gazizov, S.I. Grigorieva, Phys. Rev. D 74, 043005 (2006).

    Article  ADS  Google Scholar 

  20. V.S. Berezinsky, S.I. Grigorieva, B.I. Hnatyk, Astropart. Phys. 21, 617625 (2004).

    Article  Google Scholar 

  21. The Pierre Auger Collaboration, Phys. Rev. Lett. 104, 091101 (2010).

    Article  ADS  Google Scholar 

  22. P. Facal for the Pierre Auger Collaboration, Proc. 32th ICRC 2011, Beijing, arXiv:1107.4804.

  23. HiRes Collaboration (R. Abbasi et al.), Phys. Rev. Lett. 104, 161101 (2010).

    Article  ADS  Google Scholar 

  24. HiRes/MIA Collaboration (T. Abu-Zayyad et al.), Astrophys. J. 557, 686 (2001).

    Article  ADS  Google Scholar 

  25. Yakutsk Collaboration (S. Knurenko, A. Sabourov), Proc. XVI ISVHECRI, (2010).

  26. Yakutsk Collaboration (S. Knurenko, A. Sabourov), Nucl. Phys. B 212-213, 241 (2011).

    Article  Google Scholar 

  27. C. Jui for the Telescope Array Collaboration, Proc. APS DPF Meeting, arXiv:1110.0133.

  28. The Pierre Auger Collaboration, Astropart. Phys. 34, 368 (2011).

    Article  ADS  Google Scholar 

  29. The Pierre Auger Collaboration, Nucl. Instrum. Methods Phys. Res. A 523, 50 (2004).

    Article  Google Scholar 

  30. The Pierre Auger Collaboration, Nucl. Instrum. Methods Phys. Res. A 613, 29 (2010).

    Article  Google Scholar 

  31. The Pierre Auger Collaboration, Nucl. Instrum. Methods Phys. Res. A 620, 227 (2010).

    Article  ADS  Google Scholar 

  32. B.R. Dawson, M. Giller, G. Wieczorek, Proc. 30th ICRC 2007, Merida.

  33. F. Nerling, J. Bluemer, R. Engel, M. Risse, Astropart. Phys. 24, 421 (2006).

    Article  ADS  Google Scholar 

  34. M. Unger, B.R. Dawson, R. Engel, F. Schssler, R. Ulrich, Nucl. Instrum. Methods A 588, 433 (2008).

    Article  ADS  Google Scholar 

  35. T. Gaisser, A. Hillas, Proc. 15th ICRC, Plovdiv 8, 353 (1977).

    Google Scholar 

  36. H.M.J. Barbosa, F. Catalani, J.A. Chinellato, C. Dobrigkeit, Astropart. Phys. 22, 159 (2004).

    Article  ADS  Google Scholar 

  37. F. Sanchèz, for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4807.

  38. I.C. Maris, for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4809.

  39. H.J. Mathes, for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4807.

  40. J. Rautenberg [Pierre Auger Collaboration], Proceedings of 31th Int. Cosmic Ray Conf. (ICRC 2009) arXiv:0906.2358.

  41. S.Y. BenZvi et al., Nucl. Instrum. Methods Phys. Res. A 574, 171 (2007).

    Article  ADS  Google Scholar 

  42. B. Fick et al., JINST) 1, 11003 (2006).

    Article  ADS  Google Scholar 

  43. D. Heck, ``CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers'', Report FZKA, 6019 (1998).

  44. S. Ostapchenko, Phys. Lett. B 636, 40 (2006).

    Article  ADS  Google Scholar 

  45. N.N. Kalmykov, S. Ostapchenko, Sov. J. Nucl. Phys. 50, 315 (1989).

    Google Scholar 

  46. T. Pierog, K. Werner, Phys. Rev. Lett. 101, 171101 (2008).

    Article  ADS  Google Scholar 

  47. A. Fassò, CERN-2005-10 (2005) INFN/TC_05/11, SLAC-R-773.

  48. B. Keilhauer et al., Astropart. Phys. 22, 249 (2004).

    Article  ADS  Google Scholar 

  49. J. Linsley, private communication by M. Hillas (1988).

  50. S. Argirò et al., Nucl. Instrum. Methods Phys. Res. A 580, 1485 (2007).

    Article  ADS  Google Scholar 

  51. L. Prado et al., Nucl. Instrum. Methods A 545, 632 (2005).

    Article  ADS  Google Scholar 

  52. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003) IEEE Trans. Nucl. Sci. 53.

    Article  ADS  Google Scholar 

  53. The Pierre Auger Collaboration, Astropart. Phys. 35, 266 (2011).

    Article  ADS  Google Scholar 

  54. M. Settimo for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4805.

  55. The Pierre Auger Collaboration, Astropart. Phys. 29, 243 (2008).

    Article  ADS  Google Scholar 

  56. T. Bergmann et al., Astropart. Phys. 26, 420 (2007).

    Article  ADS  Google Scholar 

  57. K. Werner, F.M. Liu, T. Pierog, Phys. Rev. C 74, 044902 (2006).

    Article  ADS  Google Scholar 

  58. K. Kamata, J. Nishimura, Prog. Theoret. Phys. Suppl. 6, 93 (1958).

    Article  ADS  Google Scholar 

  59. K. Greisen, Prog. Cosmic Rays Phys. III, 26 (1965).

    Google Scholar 

  60. C. Di Giulio, for the Pierre Auger Collaboration, Proceedings of 31st Int. Cosmic Ray Conf. (ICRC 2009) arXiv:0906.2189.

  61. E.-J. Ahn, R. Engel, T.K. Gaisser, P. Lipari, T. Stanev, Phys. Rev. D 80, 094003 (2009).

    Article  ADS  Google Scholar 

  62. M. Nagano, K. Kobayakawa, N. Sakaki, K. Ando, Astropart. Phys. 20, 293 (2003).

    Article  ADS  Google Scholar 

  63. A. Castellina, for the Pierre Auger Collaboration, Proceedings of 31th Int. Cosmic Ray Conf. (ICRC 2009) arXiv:0906.2319.

  64. R. Pesce, for the Pierre Auger Collaboration, Proceedings of 32th Int. Cosmic Ray Conf. (ICRC 2011) arXiv:1107.4809.

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Mariangela Settimo.

Additional information

This paper is based on the author’s PhD thesis, that was awarded the INFN Bruno Rossi Prize in 2011.

Lists of authors and their affiliations appear at the end of the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Settimo, M., Pierre Auger Collaboration. Measurement of the cosmic ray energy spectrum using hybrid events of the Pierre Auger Observatory. Eur. Phys. J. Plus 127, 87 (2012). https://doi.org/10.1140/epjp/i2012-12087-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12087-9

Keywords

Navigation