Skip to main content
Log in

Fractal space time and variation of fine-structure constant

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The effect of fractal space time of the quantum particles on the variation of the fine-structure constant α has been studied. The variation of the fine-structure constant has been investigated around De Broglie length λ and Compton length λ c and it has been suggested that the variation may be attributed to the dimensional transition of the particle trajectories between these two quantum domains. Considering the fractal universe with a small inhomogeneity in the mass distribution in the early universe, the variations of the fine-structure constant have been investigated between matter- and radiation-dominated era. The fine-structure constant shows critical behaviour with critical exponent which is fractional and shows a discontinuity. It has been suggested that the variation of the fine-structure constant may be attributed to the intrinsic scale dependence of the fundamental constants of nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Albrecht et al., Phys. Rev. D 59, 043516 (1999).

    Article  ADS  Google Scholar 

  2. J.D. Barrow et al., Phys. Lett. B 443, 104 (1998).

    Article  ADS  Google Scholar 

  3. J.D. Barrow et al., Phys. Rev. D 65, 063504 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  4. P.A.M. Dirac, Nature 139, 323 (1973).

    Article  ADS  Google Scholar 

  5. E. Teller, Phys. Rev. 73, 801 (1948).

    Article  ADS  Google Scholar 

  6. J.K. Webb et al., Phys. Rev. Lett. 82, 884 (1999).

    Article  ADS  Google Scholar 

  7. J.K. Webb et al., Phys. Rev. Lett. 87, 091301 (2001).

    Article  ADS  Google Scholar 

  8. J.A. King et al., Mon. Not. R. Astron. Soc. 000, 1 (2012).

    Google Scholar 

  9. M.T. Murphy et al., Mon. Not. Astron. Soc. 327, 1208 (2001).

    Article  ADS  Google Scholar 

  10. G. Huey et al., Phys. Rev. D 65, 083001 (2003).

    Article  ADS  Google Scholar 

  11. J.D. Barrow et al., Phys. Rev. D 78, 083536 (2008).

    Article  ADS  Google Scholar 

  12. J.D. Barrow et al., Astrophys. J. Lett. 532, L87 (2000).

    Article  ADS  Google Scholar 

  13. L. Anchordoqui et al., Phys. Lett. B 660, 529 (2008).

    Article  ADS  Google Scholar 

  14. J.W. Moffat, arXiv: astro-ph/0109350v2.

  15. J.D. Bakenstein, Phys. Rev. D 25, 1527 (1982).

    Article  ADS  Google Scholar 

  16. M.S. Berman, Rev. Mex. Astron. Astrofis. 45, 139 (2009).

    ADS  Google Scholar 

  17. H.B. Sanvik et al., Phys. Rev. Lett. 88, 031302 (2002).

    Article  ADS  Google Scholar 

  18. C. Cingoz, Phys. Rev. Lett. 98, 040801 (2007).

    Article  ADS  Google Scholar 

  19. J.P. Uzan, Rev. Mod. Phys. 75, 403 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. S.N. Banerjee et al., Mod. Phys. Lett. A 12, 537 (1997).

    Article  Google Scholar 

  21. R.P. Feyman, A.R. Hibbs, Quantum Mechanics and Path Integrals (MacGraw-Hill, 1965).

  22. L. Nottale, Fractal spacetime and Microphysics (World Scientific, Singapore, 1992) p. 95.

  23. L. Nottale, Scale Relativity and Fractal Space-Time (Imperial College Press, 2011).

  24. M. Ozer, Mod. Phys. Lett. A 13, 571 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Weinberg, The Three Minutes (Harper Collin, 1993) p. 180.

  26. T. Bank et al., Phys. Rev. Lett. 88, 131301 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  27. F.J. Culetto, Does Fractal geometry tune electrodynamics’ scales? article in web.

  28. M.S. Naschie, Chaos, Solitons Fractals 10, 1947 (1999).

    Article  ADS  MATH  Google Scholar 

  29. E. Goldfain, Chaos, Solitons Fractals 17, 811 (2003).

    Article  ADS  MATH  Google Scholar 

  30. Zhe Chang et al., Eur. Phys. J. C 72, 1838 (2012).

    Article  ADS  Google Scholar 

  31. F. Cannatan et al., Am. J. Phys 56, 721 (1988).

    Article  ADS  Google Scholar 

  32. M.N. Celerier, L. Nottale, J. Phys. A 37, 931 (2004).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. G. t’Hooft, Quantum Grav. 16, 3262 (1999).

    Google Scholar 

  34. L. Susskind, J. Math. Phys. 36, 6377 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. J. Gine, Adv. Stud. Theor. Phys. 6, 485 (2012).

    MATH  Google Scholar 

  36. B. Wang et al., Phys. Rev. Lett. 85, 5507 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  37. G. Veneziano, Phys. Lett. B 454, 22 (1999).

    Article  ADS  Google Scholar 

  38. J.P. Mureika, JCAP 05, 021 (2007).

    Article  ADS  Google Scholar 

  39. R. Tavakol et al., Phys. Lett. B 469, 37 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, A., Saha, R. & Chakrabarti, B. Fractal space time and variation of fine-structure constant. Eur. Phys. J. Plus 127, 57 (2012). https://doi.org/10.1140/epjp/i2012-12057-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12057-3

Keywords

Navigation