Skip to main content
Log in

Impedance measurements for photon number resolving Transition-Edge Sensors

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The complex impedance measurement technique is an established method for the characterisation of Transition-Edge Sensors (TES) bolometers and microcalorimeters. In this report this technique is applied at frequencies up to 250kHz to Ti/Pd and Ti/Au Transition-Edge Sensors, in the optical and near-infrared wavelength range, to obtain a complete frequency response in the complex plane. From these measurements we obtain information about the logarithmic temperature sensitivity α, the logarithmic current sensitivity β and on the device thermal parameters, heat capacity C, thermal conductance G and the effective response time τ eff. All these parameters provide a reasonable understanding of the two different detectors and a discussion about the main differences is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.C. Zwinkels, E. Ikonen, N.P. Fox, G. Ulm, M.L. Rastello, Metrologia 47, 15 (2010).

    Article  ADS  Google Scholar 

  2. R.H. Hadfield, Nat. Photon. 3, 696 (2009).

    Article  ADS  Google Scholar 

  3. M. Galeazzi, D. McCammon, J. Appl. Phys. 93, 4856 (2003).

    Article  ADS  Google Scholar 

  4. M.A. Lindeman, S. Bandler, R.P. Brekosky, J.A. Chervenak, E.F. Feliciano, F.M. Finkbeiner, M.J. Li, C.A. Kilbourne, Rev. Sci. Instrum. 75, 1283 (2004).

    Article  ADS  Google Scholar 

  5. T. Saab, S.R. Bandler, J. Chervenak, E.F. Feliciano, F. Finkbeiner, N. Iyomoto, R.L. Kelley, C.A. Kilbourne, M.A. Lindeman, F.S. Porter, J. Sadleir, Nucl. Instrum. Methods A 559, 712 (2006).

    Article  ADS  Google Scholar 

  6. B.L. Zink, J.N. Ullom, J.A. Beall, K.D. Irwin, W.B. Doriese, W.D. Duncan, L. Ferreira, G.C. Hilton, R.D. Horansky, C.D. Reintsema, L.R. Vale, Appl. Phys. Lett. 89, 124101 (2006).

    Article  ADS  Google Scholar 

  7. E. Taralli, C. Portesi, L. Lolli, E. Monticone, M. Rajteri, I. Novikov, J. Beyer, Supercond. Sci. Technol. 23, 105012 (2010).

    Article  ADS  Google Scholar 

  8. E. Taralli, C. Portesi, R. Rocci, M. Rajteri, E. Monticone, IEEE Trans. Appl. Supercond. 19, 493 (2009).

    Article  ADS  Google Scholar 

  9. C. Portesi, E. Taralli, R. Rocci, M. Rajteri, E. Monticone, J. Low Temp. Phys. 151, 261 (2008).

    Article  ADS  Google Scholar 

  10. J. Martinis, G. Hilton, K. Irwin, D. Wollman, Nucl. Instrum. Methods Phys. Res. A 444, 23 (2000).

    Article  ADS  Google Scholar 

  11. G.C. Hilton, J.M. Martins, K.D. Irwin, N.F. Bergren, D.A. Wollman, M.E. Huber, S. Deiker, S.W. Nam, IEEE Trans. Appl. Supercond. 11, 739 (2001).

    Article  Google Scholar 

  12. G.D. Kneip, J.O. Betterton Jr., J.O. Scarbrough, Phys. Rev. 130, 1687 (1963).

    Article  ADS  Google Scholar 

  13. K.D. Irwin, G.C. Hilton, in Cryogenic Particle Detection, edited by C. Enss, Springer Topics in Applied Physics, Vol. 99 (Springer, Berlin, 2005) pp. 63--149.

  14. J.A. Rayne, Phys. Rev. 107, 669 (1957).

    Article  ADS  Google Scholar 

  15. Yong-Hamb Kim, “Thermodynamics of Low Temperature Detectors”, PhD Thesis, Providence, Rhode Island, May 2004.

  16. A. Kozorezov, A. Golubov, D. Martin, P. Verhoeve, J.K. Wigmore, The Thirteenth International Workshop on Low Temperature Detectors, 20-24 July 2009, Stanford, edited by B. Cabrera, A. Miller, B. Young, AIP Conf. Proc., Vol. 1185 (AIP, 2009) p. 27.

  17. H.F.C. Hoevers, M.L. Ridder, A. Germeau, M.P. Brujin, P.A.J. de Korte, R.J. Wiegerink, Appl. Phys. Lett. 86, 251903 (2005).

    Article  ADS  Google Scholar 

  18. F. Giazotto, T.T. Heikkila, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2006).

    Article  ADS  Google Scholar 

  19. A. Vinante, P. Falfieri, R. Mezzena, M. Muck, Phys. Rev. B 75, 104303 (2007).

    Article  ADS  Google Scholar 

  20. L. Lolli, G. Brida, I.P. Degiovanni, M. Genovese, M. Gramegna, E. Monticone, F. Piacentini, C. Portesi, M. Rajteri, I. RuoBerchera, E. Taralli, P. Traina, Int. J. Quantum Inf. 9, 405 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Portesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taralli, E., Portesi, C., Lolli, L. et al. Impedance measurements for photon number resolving Transition-Edge Sensors. Eur. Phys. J. Plus 127, 13 (2012). https://doi.org/10.1140/epjp/i2012-12013-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12013-3

Keywords

Navigation