Skip to main content
Log in

Kaluza-Klein cosmology with polytropic gas dark energy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The compact Kaluza-Klein cosmology in which polytropic gas dark energy is interacting with dark matter has been studied. The equation of state parameter and the equation of evolution of the polytropic gas dark energy has been evaluated. It has been observed that the polytropic gas model can describe the matter-dominated universe [Ω Λ → 0] in the far past and the dark-energy-dominated universe [Ω Λ → 1] at the late time. It has been also observed that (in the context of this interacting polytropic model), the transition from decelerated expansion (q > 0) to accelerated expansion (q < 0) takes place sooner for larger value of c and also by increasing the interaction parameter α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Weinberg, Physics in Higher Dimensions (World Scientific, Singapore, 1986).

  2. A. Chodos, S. Detweller, Phys. Rev. D 21, 2167 (1980).

    Article  ADS  Google Scholar 

  3. J. Ibanez, E. Verdaguer, Phys. Rev. D 34, 1202 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  4. R.J. Gleiser, M.C. Diaz, Phys. Rev. D 37, 3761 (1988).

    Article  ADS  Google Scholar 

  5. S. Banerjee, B. Bhui, Mon. Not. R. Astron. Soc. 247, 57 (1990).

    ADS  Google Scholar 

  6. D.R.K. Reddy, N. Venkateswara Rao, Astrophys. Space Sci. 277, 461 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. G.S. Khadekar, M. Gaikwad, Proc. Einstein Found. Int. 11, 95 (2001).

    Google Scholar 

  8. K.S. Adhav et al., Int. J. Theor. Phys. 47, 2002 (2008) DOI:10.1007/s10773-007-9644-3.

    Article  MATH  Google Scholar 

  9. T. Kaluza, Zum Unitäts-Problem der Physik, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) K1, 966 (1921).

  10. O. Klein, Z. Phys. 37, 895 (1926).

    Article  ADS  Google Scholar 

  11. H.C. Lee, An Introduction to Kaluza-Klein Theories (World Scientific, Singapore, 1984).

  12. T. Appelquist, Modern Kaluza-Klein Theories (Addison-Wesley, Reading, 1987).

  13. P.D.B. Collins, Particle Physics and Cosmology (Wiley, London, 1989).

  14. J.M. Overdin, P.S. Wesson, Phys. Rep. 283, 303 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  15. P.S. Wesson, Gen. Relativ. Gravit. 16, 193 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  16. P.S Wesson, Space-time Matter Theory (World Scientific, Singapore, 1999).

  17. M. Bellini, Nucl. Phys. B 660, 389 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. H.Y. Liu, P.S Wesson, Astrophys. J. 562, 1 (2001).

    Article  ADS  Google Scholar 

  19. S. Seahra, P.S. Wesson, J. Maths. Phys. 44, 5664 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).

    Article  ADS  Google Scholar 

  21. A.R. Liddle, R.J. Scherrer, Phys. Rev. D 59, 023509 (1999).

    Article  ADS  Google Scholar 

  22. P.J. Steinhardt, L.M. Wang, I. Zlatev, Phys. Rev. D 59, 123504 (1999).

    Article  ADS  Google Scholar 

  23. G.R. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 484, 112 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  24. C. Deffayet, Phys. Lett. B 502, 199 (2001).

    Article  MATH  ADS  Google Scholar 

  25. S. Capozziello, S. Carloni, A. Troisi, arXiv:astro-ph/0303041 (2003).

  26. S.M. Carroll et al., Phys. Rev. D 70, 043528 (2003).

    Article  ADS  Google Scholar 

  27. S. Nojiri et al., Phys. Rev. D 71, 063004 (2005).

    Article  ADS  Google Scholar 

  28. P.K. Townsend, N.R. Wohlfarth, Phys. Rev. Lett. 91, 061302 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  29. G.W. Gibbons, Supersymmetry, Supergravity and Related Topics (2001).

  30. N. Ohta, Int. J. Mod. Phys. A 20, 1 (2005).

    Article  MATH  ADS  Google Scholar 

  31. S. Roy, Phys. Lett. B 567, 322 (2003).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. J.K. Webb et al., Phys. Rev. Lett. 87, 091301 (2001).

    Article  ADS  Google Scholar 

  33. J.M. Cline, J. Vinet, Phys. Rev. D 68, 025015 (2003).

    Article  ADS  Google Scholar 

  34. N. Ohta, Phys. Rev. Lett. 91, 061303 (2003a).

    Article  ADS  MathSciNet  Google Scholar 

  35. N. Ohta, Prog. Theor. Phys. 110, 269 (2003b).

    Article  MATH  ADS  Google Scholar 

  36. C.M. Chen et al., JHEP 10, 058 (2003).

    Article  ADS  Google Scholar 

  37. E. Bergshoeff, Class. Quantum. Grav. 21, 1947 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Y. Gong, A. Wang, Class. Quantum. Grav. 23, 3419 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. I.P. Neupane, D.L. Wiltshire, Phys. Rev. D 72, 083509 (2005).

    Article  ADS  Google Scholar 

  40. K. Maeda, N. Ohta, Phys. Rev. D 71, 063520 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  41. I.P. Neupane, Phys. Rev. Lett. 98, 061301 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  42. Y. Gong, A. Wang, Q. Wu, arXiv:gr-qc/0711.1597 (2007).

  43. P.R.C.T. Pereira, M.F.A. de Silva, R. Chan, Int. J. Mod. Phys. D 15, 991 (2006).

    Article  MATH  ADS  Google Scholar 

  44. C. Brandt, R. Chan, M. de Silva, J.F. Villas, Gen. Relativ. Gravit. 39, 1675 (2007).

    Article  MATH  ADS  Google Scholar 

  45. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. T. Padmanabhan, arXiv:gr-qc/0705.2533 (2007).

  47. T. Matos, A. Urena-Lopez, Class. Quantum Grav. 17, L75 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. C. Wetterich, Phys. Rev. D. 65, 123512 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  49. T. Padmanabhan, T.R. Choudhury, Phys. Rev. D 66, 081301 (2002).

    Article  ADS  Google Scholar 

  50. L. Amendola, Phys. Rev. D 60, 043501 (1999).

    Article  ADS  Google Scholar 

  51. L. Amendola, Phys. Rev. D 62, 043511 (2000).

    Article  ADS  Google Scholar 

  52. M. Szydlowski, Phys. Lett. B 632, 1 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  53. S. Tsujikawa, Phys. Rev. D 73, 103504 (2006).

    Article  ADS  Google Scholar 

  54. O. Bertolami et al., Phys. Lett. B 654, 165 (2007).

    Article  ADS  Google Scholar 

  55. C. Feng et al., JCAP 09, 005 (2007).

    ADS  Google Scholar 

  56. D.J. Christensen, Lecture Notes on Stellar Structure and Evolution, 6th edition (Arhus University Press, Aarhus, 2004).

  57. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  58. K. Karami et al., Eur. Phys. J. C 64, 85 (2009).

    Article  ADS  Google Scholar 

  59. K. Karami, A. Abdolmaleki, arXiv: 1010.4294v1[hep-th] (2010).

  60. K. Karami, A. Abdolmaleki, arXiv:1009.3587v1 (2010).

  61. C. Ozel, H. Kayhan, G.S. Khadekar, Ad. Studies Theor. Phys. 4, 117 (2010).

    MATH  Google Scholar 

  62. M. Sharif, F. Khanum, Gen. Relativ. Gravit. 43, 2885 (2011).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  63. P. de Bernardis et al., Nature 404, 955 (2000).

    Article  ADS  Google Scholar 

  64. D. Pavon, W. Zimdahl, Phys. Lett. B 634, 93 (2006).

    Article  Google Scholar 

  65. Zong-Kuan Guo et al., Phys. Rev. D 76, 023508 (2007) astro-pf/0702015.

    Article  ADS  Google Scholar 

  66. Bin Wang et al., Phys. Lett. B 624, 141 (2005).

    Article  ADS  Google Scholar 

  67. A. Sheykhi, Phys. Lett. B 680, 113 (2009).

    Article  ADS  Google Scholar 

  68. H. Wei, R.G. Cai, Phys. Lett. B 660, 115 (2008).

    ADS  Google Scholar 

  69. L. Zhang et al., Int. J. Mod. Phys. D 19, 21 (2010).

    Article  MATH  ADS  Google Scholar 

  70. L.P. Chimento, Phys. Rev. D 81, 043525 (2010).

    Article  ADS  Google Scholar 

  71. Y.S. Sun, R.H. Yue, arXiv:1009.1214v3[gr-qc] (2011).

  72. M. Malekjani, A. Khodam, M. Taji, Int. J. Theor. Phys. 50, 3112 (2011).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Adhav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adhav, K.S. Kaluza-Klein cosmology with polytropic gas dark energy. Eur. Phys. J. Plus 126, 127 (2011). https://doi.org/10.1140/epjp/i2011-11127-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2011-11127-4

Keywords

Navigation