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Abstract This paper is devoted to two hitherto unpublished original documents by Henry Cavendish (1731–1810) which
provide insight into his calculations of the deflection of light by isolated celestial bodies. Together with a transcription of
these documents, we comment on their contents in the present-day language of physics. Moreover, we compare them with
a paper by Johann Georg von Soldner (1776–1833) on the same subject.

1 Introduction

The history of ideas about the deflection of light by the gravitational attraction of celestial bodies goes back to
the times of Isaac Newton (1642–1726). In fact, in his book Opticks [18] he, in 1704, asks the question (3rd Book,
Query No. 1):

Do not Bodies act upon Light at a distance, and by their action bend its Rays, and is not this action (caeteris
paribus) strongest at the least distance?

Another of his queries even gives us an idea of how Newton imagined light itself (Query No. 29):

Are not the Rays of Light very small Bodies emitted from shining Substances?

However, the first published calculation of this kind of light deflection goes back to the German astronomer
and geodesist Johann Georg von Soldner (1776–1833) [25]. There is a huge body of literature on pre-relativistic
approaches to light deflection where, inevitably, the work of Soldner is mentioned and discussed in detail. Here we
only cite [3–5,7,19,27–30] and, from the point of view of physics teaching [12].

Only in more recent times, the English physicist and chemist Henry Cavendish (1731–1810) is mentioned in this
respect. Cavendish is most well known for his discovery of the chemical element hydrogen and the torsion-balance
experiment named after him, that made him, loosely speaking, “the man who weighed the Earth.” More about
Cavendish’s life and work can be found in [8,13,14,22].

In 1921, indeed, the Astronomer Royal of those days, Sir Frank Watson Dyson, compiled, on invitation by
the editor of Cavendish’s Scientific Papers, Sir Edward Thorpe, four excerpts from Cavendish’s astronomical
manuscripts for publication in the second volume [26]. Among them is “an isolated scrap on the bending of a ray
of light by gravitation, which is of interest, as the possibility of the bending of a ray of light by a gravitational field
is at present engaging attention, though Cavendish was working on a corpuscular theory.” Dyson’s even shorter
excerpt from Cavendish’s undated note, which is very short anyway, reads as follows [26, p. 437]:

(4) To find the bending of a ray of light which passes near the surface of any body by the attraction of that
body.
Let s be the centre of body and a a point of surface. Let the velocity of body revolving in a circle at a distance
as from the body be to the velocity of light as 1 : u, then will the sine of half bending of the ray be equal to

1
1+u2 .

Dyson, who played a decisive role in, and announced the results of, the expeditions that, in 1919, confirmed the
deflection of starlight at the limb of the Sun, added in brackets: “[This deflection is half the amount given by
Einstein’s law of gravitation.]” And he also speculated that Cavendish could have been inspired by the above-
mentioned Newton’s “Query No. 1”. For more about Dyson’s role in the solar-eclipse expeditions and biographical
details, the interested reader is referred to the recent book by Kennefick [9].
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It is very likely that an immediate source of inspiration for Cavendish was the letter written to him by Reverend
John Michell (1724–1793) on May 26, 1783. In particular, Michell thought that it was possible to determine the
mass of a star by measuring the diminution of the speed of light as a consequence of the gravitational attraction of
that star on the light corpuscles emanating from it. He arrived at the conclusion that stars with the same average
density as the Sun, but a size 500 times larger, remain invisible for far-away observers because the escape velocity
at the surface of such stars exceeds the velocity of light. Michell called them “dark stars.”

The date of this letter gives many authors reason to believe that Cavendish’s undated note could have been
written in 1783/84. As a matter of fact, we read:

In fact, Henry Cavendish (1731–1810) appears to have come to essentially the same result as von Soldner in
an unpublished manuscript of about 1784, inspired by John Michell’s paper of the previous year on the escape
of light from a massive body. [11, p. 120, footnote 10]

One of the earliest calculations of the deflection of light from a distant source by a foreground gravitational
field is due to Henry Cavendish around 1784. Unfortunately, the only evidence that he did such a calculation
is on an isolated scrap of paper. [20, p. 4]

Presumably stimulated by the correspondence with his friend Michell, Henry Cavendish calculated, around
1784, the deflection of light by a body, assuming the corpuscular theory of light and Newton’s law of gravita-
tion. He did not publish his calculation, but stated the result on an isolated scrap of paper. [23, p.1]

The only evidence we have that he did the calculation at all was a single item found early in this century
among his papers, which were in the possession of the Duke of Devonshire, during a project to complete the
compilation and publication of his oeuvre. [30]

In this respect, only Jungnickel and McCormmach claim that Cavendish’s note could have been written no earlier
than in 1804. They argue that the piece of paper Cavendish wrote on contained watermarks which were not in use
before that year:

Cavendish continued to hold to the particle theory of light after Thomas Young introduced the wave theory
of light in 1800: in or after 1804 Cavendish calculated the gravitational bending of light passing near the
surface of a body such as the limb of a star or the edge of a hair. 152 . . . 152 Sci. Pap. 2:437. The calculation
is undated, but an inspection of the watermark on the paper shows that it could not have been earlier than
1804. [8, p. 414]

Cavendish’s manuscripts are still in the possession of the Duke of Devonshire today, saved in private collections
in Chatsworth House (England). The authors of the present paper are very grateful to the assistant archivist of
Chatsworth House, Mr. Aidan Haley, as well as the photo librarian, Mrs. Diane Naylor, for providing us with a
copy of the complete Cavendish note on light deflection (see Fig. 1). Specifically, we found it interesting that in
the second part of this note, not published by Dyson, in addition to a brief explanation of the result, there was
also a reference to another page called by Cavendish “A.5”. Also this page was kindly made available to us (see
Fig. 2). From the content of this page, it becomes evident in detail how Cavendish arrived at his result about the
deflection of light.

Our paper is focused on the transcription and explanation of these two documents. It is organized as follows:
Sect. 2 is a postscript of the complete Cavendish note on the “isolated scrap of paper.” In Sect. 3, we accomplish
the same for the page A.5. Although we want to adhere to the original version as much as possible, we nevertheless
use present-day notations and physical concepts, even if these were not available in the days of Cavendish and
Newton. In this way, we want to make it easier for the reader to follow Cavendish’s reasoning.

Section 4 is then devoted to Cavendish’s result, its presentation in today’s formal language as well as to a
comparison with Soldner’s derivation.

Furthermore, “Appendix A” contains the transcription of the manuscripts shown in Figs. 1 and 2. We, of course,
retain Cavendish’s notation but, at the same time, we indicate where points, lines or angles are meant. For the
sake of better understanding, we add the two branches of the hyperbola to the first figure of Cavendish’s page A.5
and the light-deflecting celestial body to the second.

Finally, we compile in “Appendix B” all those characteristics of a hyperbola which Cavendish made use of and
which are required for an understanding of this paper.

2 An “Isolated Scrap of Paper”

In the first part of his note which was included in the Scientific Papers [26] by Dyson, Cavendish communicated
his result: The deflection angle δ is implicitly given by
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Fig. 1 The complete “isolated scrap of paper” of which an abridged version was reprinted in the Scientific Papers [26].
(The Devonshire Collections, Chatsworth, Henry Cavendish Group VIII/53, “Collection of papers on comets”)

sin
δ

2
=

1
1 + u2

, (1)

where u denotes the ratio

u =
c

vcirc(R)
(2)

of the velocity c of light to the velocity vcirc on a circular orbit at the distance R = F1V1 from the centre F1 of
the light-deflecting body (see Fig. 4).

In the second, unpublished part of the note (see Fig. 1 and transcription), Cavendish presented a short expla-
nation of this result and referred to page A.5 for a more detailed one. The main result of this page A.5 is the
velocity v(r1) that any body can have at an arbitrary point P of a hyperbola due to the gravitational attraction of
a celestial body. In terms of the velocity on a circle with radius r1, vcirc(r1), this velocity is given by (for derivation
see Sect. 3, Lemma 1)

[
v(r1)

vcirc(r1)

]2

=
r1 + 2a

a
.

From this it follows, for r1 � a, that the ratio of the velocity at an infinitely large distance on the hyperbola, v∞,
to the velocity vcirc(R) on a circle with radius R is (see Sect. 3, Lemma 2)

v∞
vcirc(R)

=

√
R

a
≡ u. (3)

This is the original definition of the quantity u. At his page A.5, Cavendish did not explicitly refer to light.
However, having been an advocate of Newton’s theory according to which light was composed of corpuscles, he
was able to transfer his result to the particles of light provided that for them the equivalence of inertia and gravity
was supposed to be valid as well. In that case, the mass of those particles did not matter and optics was nothing
but an application of (celestial) mechanics to light.

Thus, the ratio (2) becomes a special case of Eq. (3), and what is called “velocity of light” by Cavendish is
the velocity of the particles of light at infinity: v∞,light = c. Furthermore, this makes clear that, according to
Newtonian celestial mechanics, the orbits of the particles of light must be hyperbolas as long as their deflection is
due to “normal” celestial bodies. (Michell’s “dark stars” were not known to exist.)
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Among the many characteristics of the hyperbola, Cavendish made use of V1Q = F1C = e and the fact that the
impact parameter fulfils F1N = CQ = b (and therefore CN = a; see Sect. 3, Lemma 2). For the deflection angle δ,
we get from the triangles �CQV1 and �CF1N of Fig. 4 the expression

sin
δ

2
=

CV1

V1Q
=

CN
F1C

=
a

e

and, by means of e = a + R and the definition (3) of u,

sin
δ

2
=

1

1 +
R

a

=
1

1 + u2
.

For particles of light, this is nothing but the deflection angle (1) with u given by the ratio (2).

3 The page “A.5”

The page A.5 comprises the calculations which, among other things, lead to the result about the deflection of light
as it was communicated on the “isolated scrap of paper” (see Fig. 2 and transcription).

To begin with, Cavendish defined his notation for points and lines in the figures of that page. In what follows we
refer to the present-day notation of Figs. 3 and 4. Among the characteristics of the hyperbola, Cavendish mentions
first that the bisector of the angle γ = �F1PF2 has the direction of the orbit in P, that is the direction of the
tangent PT to the hyperbola in P. Moreover, he defined the symbol v as the ratio of two velocities, namely the
velocity at the point P on the hyperbola to the velocity on a circle of radius r1 = F1P.

3.1 Lemma 1

In Lemma 1, Cavendish calculated the velocity that a body had in an arbitrary point of its hyperbolic orbit, due
to the attractive gravitational force of a celestial body with its centre in the focus F1. This calculation consisted
of a geometrical and a physical part.

The geometrical part started with the law of cosines in the triangle �F1PF2. We have

r21 − 2(r1 cos γ)r2 + r22 = (2e)2.

The projection of the focal radius r1 onto r2 is p = PK = r1 cos γ. This yields, together with Eq. (B.3) (see
“Appendix B”),

r21 − 2pr2 + r22 = 4a2 + 4b2.

Now we replace b2 by the latus rectum L (parameter of the hyperbola) and a2 by 4a2 = (r2 − r1)
2, making use of

Eqs. (B.4) and (B.1), respectively, to get

r21 − 2pr2 + r22 =
(
r22 − 2r1r2 + r21

)
+ 2La.

This reduces to

La = r2 (r1 − p) .

Making use again of the definition (B.1) in order to express r2 by r1 and applying the relation 1− cos γ = 2 sin2 γ
2 ,

we end up with

La = (r1 + 2a) · 2r1 sin2 γ

2
. (4)

As Cavendish communicated without comments, the physical part of this lemma is expressed by

L = 2r1

[
v(r1)

vcirc(r1)

]2

sin2 γ

2
. (5)

123



Eur. Phys. J. H (2021) 46 :24 Page 5 of 16 24

Fig. 2 Cavendish’s page “A.5,” where he calculates the velocity of a body in an arbitrary point of a hyperbola. (The
Devonshire Collections, Chatsworth, Henry Cavendish Group VIII/53, “Collection of papers on comets”)

Here we designated by the symbol v the velocity itself and not, like Cavendish, the ratio of two velocities. We derive
this connection between the geometry and the physics of the motion on a hyperbola in present-day language.

The Newtonian attractive force of gravitation,

F = −G
Mm

r2
· r
r
, (6)
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Fig. 3 The geometry of the hyperbola (I). The meaning of the symbols is as follows. P: any point on a branch of a hyperbola,
F1 and F2: foci, V1 and V2: vertices, r1 = F1P and r2 = F2P: lengths of the focal radii, a = V1C: semi-transverse axis,
e = F1C: linear eccentricity, PT: tangent to the hyperbola in P, 1

2
L: semi-latus rectum

is a central force in the narrower sense, for its direction
(− r

r

)
is purely radial and also its modulus depends on the

radial coordinate r only. Force fields of this kind fulfil the conservation laws of energy and angular momentum P.
In Eq. (6), M is the mass of the central body. This body we may consider at rest as long as we do not deal with a
genuine two-body problem. The universal, Newtonian gravitational constant is designated by G. Its modern value
is G = 6.67384 · 10−11 m3

kg·s2 .
The term “Newtonian” says no more than “this is the gravitational constant of Newton’s theory of gravitation.”

In particular, it does not say that it is named after Newton because he might have introduced this constant into
his theory or even knew its value. He did not. As Hecht pointed out recently [6], confirming [8], it was about
a lifetime after Cavendish that Boys [1] and Poynting [21] introduced the constant G, thus completing Eq. (6).
Already the title of Boys’ paper indicates that the name “Newtonian” was attached to G at the very first moment
of its implementation. Today, this name is in common use not only in countless scientific papers but also in physics
textbooks of which we, at random, cite [10,16,24].1

It belongs to the standard repertoire of any introduction to classical mechanics to solve the problem of motion
for the force field (6). Expressed by the polar coordinates r and ϕ of Fig. 3, the shape of the orbit is given by

r(ϕ) =

|P|2
GMm2

1 + ε cos ϕ
.

A comparison with Eq. (B.5) of “Appendix B” reveals that this is a hyperbola for ε > 1. In particular, we infer
the relation

L = 2 · r
(π

2

)
= 2

|P|2
GMm2

,

according to which the latus rectum is the geometrical representative of angular momentum.
By its very definition, the modulus of the angular momentum is (vector product)

|P| = mrv sin �(r,v).

1 It would be sensible and fair to call this constant the “Cavendish constant,” as it was done in [5], because it was measured
with a torsion balance. Apparently, this idea did not permeate. The authors of [16] introduced a Cavendish constant as well
which reduces to G only in case that Einstein’s theory of gravitation is the correct description of Nature.
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According to Fig. 3, and making use of the above-mentioned characteristic of the hyperbola, namely that the
bisector of the angle �F1PF2 has the direction of v, we get �(r,v) = π − γ

2 and therefore

L =
2

GM
r21v

2 sin2 γ

2
.

Replacing the constant GM by the velocity on a circular orbit,

vcirc(r1) =
√

GM

r1
, (7)

we eventually reproduce Cavendish’s formula (5).
The notion of “angular momentum” was available neither at Cavendish’s time nor when Newton, one hundred

years before, wrote his Principia. But we may assume without a doubt that Cavendish was very familiar with
Newton’s book [8]. We read [17, Book 1, Section 3: Proposition 16, Theorem 8, Corollary 9]:

. . . it follows . . . that the velocity of a body revolving in a conic will have the same ratio to the velocity of a
body revolving in a circle at the same distance that a mean proportional between that common distance and
half of the principal latus rectum of the conic has to the perpendicular dropped from the common focus to
the tangent of the conic.

This, translated into formulas (the “mean proportional” is nothing but the geometric mean value), is

v(r1)
vcirc

=

√
r1 · 1

2L
d

,

where d = r1 sin γ
2 is the length of the perpendicular F1L from the focus F1 onto the tangent PT (see Fig. 3).

Solving for L yields Eq. (5) again.
In a last step, we bring together the geometrical and physical parts of Cavendish’s derivation. From Eqs. (4)

and (5), we obtain

[
v(r1)

vcirc(r1)

]2

=
r1 + 2a

a
. (8)

3.2 Lemma 2

Lemma 2 again consists of a geometrical and a physical part.
The geometrical part starts with a characteristic of the hyperbola which was, at least to Cavendish, fundamental

(“by nature of the hyperbola”): If V1Q ‖ g2, then V1Q = F1C = e (see Fig. 4 and “Appendix B”). Given that, we
get CQ = b, because in the triangle �V1CQ, we have V1C = a and e2 = a2+b2. The rectangular triangles �V1CQ
and �F1NC not only have their hypotenuses in common but also the adjoining interior angles (�NF1C = �CQV1

and �NCF1 = �QV1C); both triangles are congruent. Consequently, F1N = CQ = b and CN = V1C = a. The
dimension of the impact parameter is the same as that of the semi-conjugate axis, that is b.

Furthermore, if G1G2 ‖ F1F2, we have

1
2G1G2

CG2

=
CN
F1C

=
V1C
F1C

=
a

e
,

which is immediately evident from the triangles �G2CH and �F1CN.
The physical part of this lemma once more deals with ratios of velocities. For r1 � a, that is “at infinity,” the

main result (8) of Lemma 1 turns into

v∞
vcirc(r1)

=
√

r1
a

.

(The distance designated x by Cavendish must not be confused with the x coordinate in Figs. 3 and 4.)
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Fig. 4 The geometry of the hyperbola (II). The meaning of the symbols is as follows. g1 and g2: asymptotes, δ: angle of
intersection of the asymptotes, b: semi-conjugate axis and impact parameter, hatched: gravitating celestial body of radius
R. It is V1Q ‖ g2 and G1G2 ‖ F1F2

For the sake of comparison, Cavendish invoked the velocity on a circle of radius F1N = b to obtain (cf. Eq. (7))

v∞
vcirc(b)

=
v∞

vcirc(r1)
· vcirc(r1)

vcirc(b)
=

√
r1
a

·
√

b

r1
=

√
b

a
.

This ratio may be formed for other circular orbits as well. For a circle of radius F1V1 = R, we regain the ratio (3).

4 Deflection of light: Cavendish and Soldner

In this section, we put Cavendish’s work into context with that of his contemporary Soldner. We cited the extensive
literature about Soldner’s paper [25] already in Sect. 1.

In Newton’s theory of light corpuscles, the particles get accelerated by a celestial body while approaching it.
The main result of Cavendish’s page A.5, that is the ratio (8) of velocities, yields, together with the velocity (7)
on a circular orbit,

v2(r1) = GM

(
2
r1

+
1
a

)
.

As r1 → ∞, it follows v2
∞ =

GM

a
and therefore

v2(r1) = v2
∞ + 2

GM

r1
. (9)

This is nothing but the law of conservation of energy, a concept that was available neither to Cavendish nor to
Newton.

With Cavendish’s choice v∞,light = c, Eq. (9), when applied to light, turns into

v2
light(r1) = c2 + 2

GM

r1
.
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Making explicit use of Eq. (7), formula (1) becomes

sin
δ

2
=

1

1 +
c2R

GM

=
GM

c2R

1

1 +
GM

c2R

. (10)

In order to reproduce this formula, Will wrote [30]: “It is interesting to try to reproduce Cavendish’s answer (in
the absence of his own detailed calculations) . . . The simplest explanation is that Cavendish assumed that the speed
of light was c . . . at infinity.” It follows without doubt from the second part of the “isolated scrap of paper” that
Cavendish has chosen just this initial condition for the deflection of light. Therefore, Will’s “simplest explanation”
is correct.

The quantity GM
c2 has the dimension of length and is a geometric measure for the strength of the gravitational

field of a body with mass M . It appears, with a factor 2, in Einstein’s theory of gravitation as well, where it is
named “Schwarzschild radius.” If we calculate this measure for the Sun, making use of our present-day knowledge
of the universal gravitational constant G, and relate it to its radius R�, we get

GM�
c2R�

≈ 2 · 10−6 	 1. (11)

In view of the smallness of this value, we may assume sin δ
2 ≈ δ

2 , and Eq. (10) becomes, in the leading order of
this quantity,

δ ≈ 2
GM

c2R
. (12)

This is the formula for the deflection of light as it is presented in modern scientific literature on Newtonian light
deflection. For the deflection of light at the limb of the Sun, we get the deflection angle δ ≈ 0.84′′. As Dyson
noticed [26], the angle δ turned out to be twice as large in Einstein’s theory.

Cavendish did not make further comments on light deflection beyond his result (1). In particular, he did not
evaluate the angle δ numerically. At least, he would not have been able to do this in the same way as we did when
we simply substituted the numerical values of G, M�, and R� into formula (12). The constant G, as a universal
constant of Nature, can be found neither in Cavendish’s paper [2] nor in Newton’s Principia [17].

However, in all formulas describing the deflection of light, the constant G permanently appears in combination
with the mass M of the light-deflecting celestial body. The product GM may be understood as a specific, “individ-
ual,” gravitational constant characterizing the gravitational field of the mass M . Hence, the quantity that matters
is GM , not G. We may take for granted that also Cavendish and Soldner were aware of this.

In his above-mentioned paper, Cavendish was mainly interested in measuring the average density of the Earth.
To that end, he determined the attractive force that the Earth exerts on small lead balls, that is, their weight. The
radius of the Earth given, this amounts to measuring the specific gravitational constant GM of the Earth. In order
to extract the mass of the Earth from the combination GM , Cavendish had to perform a second measurement,
that is, the attractive force between larger lead spheres and the smaller ones. For that measurement, he used the
torsion-balance named after him, that, by the way, goes back to Michell too [8]. He arrived at the result that the
mean density if the Earth was 5.448 that of water.

From a today’s point of view, Cavendish had everything at his disposal that was necessary to calculate explicitly
the deflection of light. But it might well be that for him, being a physicist and chemist, it was not obvious to ask
for the numerical value of δ and its observability.

What is even more because of its universality, he could have calculated the Newtonian gravitational constant G
from his data. However, we have to be cautious not to project the knowledge we have today back onto the past
when people were used to work with proportions and ratios instead of equations like (6). The first who completed
this equation by formally introducing G, and, at the same time, measured the value of G using an apparatus of
Cavendish type, were Poynting [21] and Boys [1] in the early 1890s.

Soldner, in 1801, based his calculation on the following assumption [25] (English translation taken from [7]):
“From A let a light ray go . . . horizontally, with a velocity such that it goes the distance v in one second.” In
our Fig. 3, this point A corresponds to the point V1 on the surface of the light-deflecting celestial body. Soldner’s
result for the deflection angle δ, expressed by his symbol v for the velocity of light, is

tan
δ

2
=

2gSoldner

v(R)
√

v2(R) − 4gSoldner
, (13)
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which is equivalent to

sin
δ

2
=

2gSoldner
v2(R) − 2gSoldner

.

By means of the replacement rule

2 gSoldner −→ GM

R
= gR,

this turns into

sin
δ

2
=

GM

v2(R) · R
· 1

1 − GM

v2(R) · R

. (14)

In this replacement rule, g is the gravitational acceleration at the surface of the light-deflecting celestial body
(surface gravity). As Treder and Jackisch [27] pointed out, the factor 2 is due to the definition of g, and acceleration
in general, in Soldner’s days. (Within the scope of this paper, it is not necessary to review the still ongoing debate
on the “factor-2 problem” in Soldner’s paper, including confusion that arised from printing errors. See references
cited in the Introduction.)

From Soldner’s paper, we cannot unequivocally identify the point of the orbit where his velocity of light, v, is
supposed to have the value c. Two possibilities have been discussed in the literature:

1. It seems most natural to interpret Soldner’s above-mentioned quotation in such a way that he put v(R) = c as
an initial condition. This point of view was adopted by Will [30]. In that case, Eq. (14) becomes, in contrast to
Eq. (10),

sin
δ

2
=

GM

c2R

1

1 − GM

c2R

.

Thus, Soldner and Cavendish arrived at different results which, however, coincide with the deflection angle (12)
in the leading order of a series expansion in terms of the small quantity GM

c2R .
Soldner’s initial condition, v(R) = c, leads to the consequence that the velocity of light at an infinitely great
distance is, according to Eq. (9),

v∞,light = c

√
1 − 2

GM

c2R
.

At infinity, where the light comes from, and where the gravitational attraction of isolated celestial bodies does
not exist anymore, all particles of light should have the same velocity irrespective of the mass and the size of the
light-deflecting body they are going to encounter later on their orbit. When reversing the light path, Soldner
should have reset the velocity of light to v∞,light = c.
However, even though this shortcoming is noteworthy as a matter of principle, we don’t have reason to over-
estimate it. From the point of view of measurement it is insignificant, even more if we take into account the
accuracy with which the velocity of light had been determined in those days. Indeed, because of (11), we get
for the Sun (see also [30])

c − v∞,light ≈ GM�
cR�

≈ 2 · 10−6c.

We have direct evidence from his paper that Soldner was well aware of how small the quantity GM
c2R was, that is

nothing but one half of the deflection angle. He realized that the more realistic problem to be solved was that
of the propagation of light emanating from a star at a finite distance from the Sun. This light gets deflected by
the Sun with a mass different from that of the source and is detected by an observer at a finite distance. Neither
Cavendish nor Soldner solved this problem, but Soldner, assuming “that the light ray comes from an infinitely
great distance”, argued that it would not make much difference. We read [25] (English translation in [7]: “As
this maximum value [of the deflection angle for the Earth – note added by the authors] is quite unobservable,
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it would be superfluous to go further; or to determine . . . by how much it becomes smaller when the distance
of the star from which the light ray comes is assumed to be finite and corresponding to a given magnitude.”
Indeed, we can show that about 70 per cent of the deflection of light take place in the interval −R ≤ y ≤ R of
Fig. 4.

2. It is, perhaps, a consideration like this that prompted Treder and Jackisch to add to their paper [27] the
following footnote: “Soldner’s . . . speed of light at infinity is v∞ = c . . . and at finite distances v > c”. In that
case, Eq. (9) yields

v(R) = c

√
1 + 2

GM

c2R
.

This, when inserted into Eq. (14), is in complete agreement with Cavendish’s result (10), of course. However,
as already said above, we do not find an explicit reference to this assumption in Soldner’s paper [25].

For Soldner, having been trained as an astronomer, it must have been almost a matter of course to calculate
the numerical value of the deflection angle and to speculate about its observability.

In order to calculate the deflection of light by the Earth, he took the data for the radius of the Earth and the
acceleration of its gravity from Laplace [15].

For the Sun, Soldner did not present the values of the corresponding quantities. But he knew, for sure, that
the “astronomical key” to determining the specific gravitational constant, GM�, was the planetary motion, in
particular Kepler’s Third Law

T 2

a3
=

4π2

GM
. (15)

Here T is the orbital period of a companion (planet) that is orbiting its central body (the Sun) in an ellipse with
semi-major axis a. This law was expressed by Gauss, in 1809, as the constant2

kGauss =
√

GM = 2π
a3/2

T
.

Thus, the simplest solution to determine GM� would be to substitute into Kepler’s Third Law the data for the
Earth’s orbit. However, a careful reading of Soldner’s paper [25] reveals that he refers, consistent with his deflection
formula (13), to the surface gravity of the Sun which incorporates also the Sun’s radius: “If one substitutes . . . the
acceleration of gravity on the surface of the sun, and one takes the radius of that body for unity . . . .” If only the
distance of the Earth from the Sun, that is, the Sun’s parallax, is known, it is easy to determine the radius of the
Sun, in units of length, from its angular diameter in the sky. These data Soldner might have taken from Laplace
again.

But what about the gravitational acceleration at the surface of the Sun? Soldner tells us nothing about that in
his paper. So, we present one conceivable method to express the unknown gravitational acceleration at the surface
of the Sun by that at the surface of the Earth. To our mind, this method is in the spirit of Soldner’s times, but
we, of course, do not claim, because of lack of information, that Soldner followed exactly this line of reasoning.

We may reasonably assume that he, like Cavendish, was familiar with Newton’s Principia. There we read [17,
Book 3; Proposition 8, Theorem 8, Corollary 1]:

For the weights of equal bodies revolving in circles around planets are (by book 1, prop. 4, corol. 2) as the
diameters of the circles directly and the squares of the periodic times inversely, and weights at the surfaces of
the planets or at any other distances from the center are greater or smaller (by the same proposition) as the
inverse squares of the distances.

Indeed, the gravitational acceleration of a celestial body at distance r is, according to Newton’s law (6),

g(r) =
GM

r2
∝ 1

r2
. (16)

Replacing GM by means of Kepler’s Third Law (15) for a circular orbit of radius r, we get

g(r) = 4π2 r

T 2
∝ r

T 2
.

2 The authors are grateful to Clifford Will for this reference to Gauss.
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If r♁ and T♁ designate the distance of the Earth from the Sun and its orbital period, respectively, we get for
the surface of the Sun

g�(R) = g�(r♁) ·
r2♁
R2�

= 4π2
r3♁
T 2♁ · 1

R2�
,

and, correspondingly, for the Moon as the companion of the Earth

g♁(R♁) = 4π2
r3�
T 2� · 1

R2♁ .

As mentioned above, the gravitational acceleration g♁(R♁) at the surface of the Earth (its surface gravity) was
known to Soldner. Thus, we finally arrive at the sought-after expression

g�(R) = g♁(R♁) ·
(

r♁
r�

)3

·
(

R♁
R�

)2

·
(

T�
T♁

)2

for the surface gravity of the Sun in terms of that of the Earth. Substituting all values for radii R, distances r and
periods T as they were known at Soldner’s times, we obtain from (12) and (16)

δ ≈ 2
g�(R) · R�

c2
≈ 0,84′′

for the deflection angle at the solar limb.

5 Final comments

The essential parts of this paper are Sects. 2 and 3 where we analyze the two documents from Cavendish’s
unpublished papers shown in Figs. 1 and 2.

The first part of the “isolated scrap of paper” has already been published in Cavendish’s Scientific Papers [26].
From the hitherto unpublished second part, we learn that Cavendish assumed the “correct” initial condition for
the deflection of light, that is v∞,light = c.

At his page A.5 that we, by permission, publish for the first time, Cavendish calculated the orbital velocity at
an arbitrary point of the hyperbola without making reference to light. He arrives at the result (8). Basically, in
the language of present-day physics, he applied the method of angular-momentum conservation. The structure
of this page as well as the predominantly geometrical way of reasoning remind us of Newton’s Principia as an
archetype. Indeed, theorems and lemmata are formulated first and serve as the basis for applications and examples
afterwards.

In particular, the two documents are linked up by Newton’s theory of light corpuscles. This theory allows
for transferring the result (8) to the particles of light. Therefore, what is written down on the “isolated scrap of
paper” is nothing but an application of hyperbolic motion. In this way, we can understand at last why the “isolated
scrap of paper” was included in Cavendish’s “Collection of Papers on Comets.” In fact, also some comets move
in hyperbolic orbits, of course having individual velocities v∞ > 0. Usually we are merely not interested in the
deflection angle of their orbits.

If those authors, cited in the Introduction, are right who conjecture that Cavendish’s undated notes are an
immediate reaction to Michell’s letter, we certainly can consider Cavendish a precursor of Soldner.

However, we must not forget the objection made by Jungnickel and McCormmach [8] that Cavendish could
not have published his notes earlier than in 1804. In that case, it is worth mentioning that Cavendish adhered
to the idea of light corpuscles even though Thomas Young performed and published his famous experiments on
the wave nature of light also in the first decade of the 19th century. Then, Cavendish cannot be considered a
precursor of Soldner anymore. Instead, the question is legitimate as to whether he refused to publish his notes
because Soldner already published his calculations, including a numerical value of light deflection. This is, how-
ever, very unlikely because biographers consistently report that is was a characteristic trait of Cavendish to be,
for complex reasons, very reluctant and not much interested to publish his results (see, for example, [8]). As far
as we know, there are, at least, no documents to prove that Cavendish was acquainted with Soldner’s publica-
tion.
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We hope that our paper will have an impact on the historiography of the pre-relativistic theories of light
deflection in general, and Cavendish’s contribution in particular, at least in so far as the matter of whether and
how Cavendish did his calculations is settled.
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Appendix

A. Transcription of documents

A.1. Transcription of the “Isolated Scrap of Paper”

To find the bending of a ray of light which passes near the surface of any body by the attraction of that body
Let s (2nd fig. of A5) be [the] center of [the] body and a a point of [its] surface. Let the veloc[ity] of [the] body revolving in
[a] circle at dist[ance] as from [the] body be to [the] vel[ocity] [of] light as 1 : u, then will [the] sine [of] 1

2
[of the] bending

of the ray be equal to

1

1 + u2
.

For take ac : as as 1 : u2 and, with focus s, vertex a and center c, draw the hyperb[ola] eaε and let gcf and cm be the
asymptotes and cb the sem[i] conj[ugate] axis, then ab = cs and sn = cb and, by A5, [the] vel[ocity] of the body at infin[ite]
dist[ance] in this hyperb[ola] will be to [the] vel[ocity] in [a] circle at a as√

as

ac
: 1

as it be by supp[osition], and the sine of 1
2

[of the] bending of [the] ray or

sin(�bcm) =
ac

ab
=

1

1 + u2
.

A.2. Transcription of page “A.5”

The calculation in A.3 considered more accurately.
Let s and h be [the] foci, c [the] center, cd and cb the semiaxes, p [a] point on [the] curve and let sp = a, cd = d, let pt
bisect �sph and conseq[uently] be parallel to path and let sin(�spt) = s and [the] vel[ocity] at p be to that in [a] circle at
[the] same dist[ance] as v : 1.
Lem[ma 1]) Let a, d and v signify [the] same things as in P[age] 1, then in [a] hyperbola,

v2 =
2d + a

d
.

For let the letters in [the] fig[ure] signify [the] same things with regard to [the] hyperb[ola] as in fig[ure] 1 with regard to
the ellipse. Then3

sp 2 − 2 pk · ph + ph 2 = sh 2 = 4 bc
2

+ 4 dc
2

= 2L · dc + ph 2 − 2 sp · ph + sp 2

3 L: Latus rectum or parameter (note added by the authors).
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therefore

L · dc = 2av2 [
sin2(�spt)

]
d = ph

(
sp − pk

)
= (a + 2d) · a · [

1 − 1 + 2 sin2(�spt)
]

= (a + 2d) · 2a sin2(�spt)

therefore

v2 =
a + 2d

d
.

Lem[ma] 2) Let ed be an hyperb[ola], c the center, s [the] focus, ad the princip[al] axis, cb [the] semiconj[ugate] [axis], fg
and cm the asymptotes, sn a perpend[icular] to fg. Then by nature of [the] hyperb[ola] fg is parallel to ab and ab = sc,
therefore ns = cb and cn = ac and, if gm is parallel to ds, gm : cg is as 2ac : cs.
Now [the] vel[ocity] at infin[ite] dist[ance] x is to [the] vel[ocity] in [a] circle at that dist[ance] as

√
x
d

: 1 and therefore is to
[the] vel[ocity] in [a] circle at dist[ance] sn as

√
x

d
:

√
x

sn
as

√
sn

d
: 1.

B. The geometry of the hyperbola

In this “Appendix,” we compile those of the many characteristics of an hyperbola which are necessary for an understanding
of Cavendish’s calculations and which were mentioned by himself. Moreover, even though this material can be found in
every mathematics textbook dealing with conic sections so that the majority of the readers is supposed to be familiar with
it, we have to introduce the notation used throughout this paper in order to make it a self-consistent reading. We refer to
Figs. 3 and 4 which correspond, with a few minor additions, to the two figures at Cavendish’s page A.5.

The hyperbola is the locus of all points in a plane for which the difference of the distances from two fixed points is
constant. These two points F1 and F2 are named foci. The distance of the foci from the centre C of the line F1F2 is the
linear eccentricity, e = CF1 = CF2.

Translated into formulas, the definition of the hyperbola reads

r1 − r2 = ±2a, (B.1)

with r1 = F1P and r2 = F2P, and 2a > 0 being a characteristic constant. With the coordinates x and y of an arbitrary
point P on the hyperbola, this turns into what is called the standard form

x2

a2
− y2

b2
= 1 (B.2)
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of the equation of the hyperbola. Here we defined

b =
√

e2 − a2. (B.3)

From y = 0, we immediately infer the graphic meaning of the constant a: It is the distance of the two vertices V1 and V2

from each other, which is called transverse axis, 2a = V1V2.
The standard form of the equation of the hyperbola yields, together with Eq. (B.3), the ordinate

1

2
L ≡ |y(±e)| =

b2

a
(B.4)

that corresponds to the abscissa x = ±e of the foci. The quantity L is called parameter of the hyperbola or latus rectum.
It is the length of the chord across the hyperbola that is perpendicular to the transverse axis and contains one focal point.

The tangent PT of the hyperbola at point P bisects the angle γ ≡ �F1PF2 of the two focal radii F1P and F2P. So we
have

�F1PT =
γ

2
= �F2PT.

For large coordinates x, the hyperbola approaches the two straight lines

y = ± b

a
x

through the origin which are named asymptotes g1 and g2. For the abscissa x = ±a of the vertices V1 and V2 we immediately
obtain y = ±b. Consequently, the quantity b is the ordinate of the vertices of the hyperbola, measured at its asymptotes. It
is called semi-conjugate axis.

The shortest distance F1N of the asymptote g2 from the focus F1, which for reasons of symmetry is also the distance of
both asymptotes from the two foci, is called impact parameter. It is F1N = b and, because of Eq. (B.3), CN = a.

The line parallel to an asymptote through a vertex (in Fig. 4, the line V1Q parallel to g2 through V1) intersects the
ordinate axis at the point Q whose distance from the centre C is CQ = b. Therefore, it is V1Q = e because of Eq. (B.3);
the two triangles �F1NC and �V1CQ are congruent.

The angle δ of intersection of the asymptotes g1 and g2 is that angle with its vertex in C, about which we have to rotate
the asymptote g2 in order to make it coincide with g1. This angle of intersection of the asymptotes is nothing but the
deflection angle of a light ray coming from infinity. Since g2 goes parallel to V1Q, the angle �CQV1 with its vertex at Q is
again δ

2
, and from the rectangular triangle �CQV1 we infer

sin
δ

2
=

a

e
.

If we shift the origin of the coordinate system to the focus F1 and introduce the polar coordinates r und ϕ (see Fig. 3),
the standard form (B.2) of the equation of the hyperbola transforms into the polar equation,

r =
1
2
L

1 + ε cos ϕ
, (B.5)

which is sometimes called focal equation. The quantity ε = e
a

> 1 is the numerical eccentricity of the hyperbola.
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