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Abstract The Moore–Penrose inverse celebrated its 100th birthday in 2020, as the notion standing behind
the term was first defined by Eliakim Hastings Moore in 1920 (Bull Am Math Soc 26:394–395, 1920). Its
rediscovery by Sir Roger Penrose in 1955 (Proc Camb Philos Soc 51:406–413, 1955) can be considered as
a caesura, after which the inverse attracted the attention it deserves and has henceforth been exploited in
various research branches of applied origin. The paper contemplates the role, which the Moore–Penrose
inverse plays in research within physics and related areas at present. An overview of the up-to-date literature
leads to the conclusion that the inverse “grows” along with the development of physics and permanently
(maybe even more demonstrably now than ever before) serves as a powerful and versatile tool to cope with
the current research problems.

1 Introduction

It is commonly accepted that the history of the term
“Moore–Penrose inverse” dates back to 1920, when
an American mathematician Eliakim Hastings Moore
(1862–1932) published the paper Moore (1920). The
article–providing the first definition of the notion,
which is at present known as the Moore–Penrose
inverse–did not kindle any particular attention of the
scientific community. Thirty five years later, not aware
of the work by Moore, a British physicist and math-
ematician Sir Roger Penrose (1931– ) in the paper
Penrose (1955) provided an equivalent (though differ-
ently formulated) definition of the same concept. The
fact that Moore and Penrose defined actually the same
notion was soon recognized by Richard Rado1 (1906–
1989) in Rado (1956). An attempt to identify reasons
why no noticeable reaction was kindled by the paper
Moore (1920), whereas the response caused by the arti-
cle Penrose (1955) was notable, was made in Ben-
Israel (2002); see also [Ben-Israel and Greville 2003,
“Appendix A”]. In both these sources one finds the
following judgement on the way the Moore’s defini-
tion was formulated and, simultaneously, an explana-
tion way it was generally overlooked: “...it was much
too idiosyncratic and used unnecessarily complicated
notation, making it illegible for all but very dedicated
readers.”. An earlier article Ben-Israel (1986) contains

1 Biographical information, a discussion on his scientific
interests as well as a list of publications of Richard Rado
are available in obituaries Rogers (1991, 1998).
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a thorough discussion over the inverse from the per-
spective of the work of Penrose.

It is noteworthy that the lifespans of the two sci-
entist whose names are now attributed to the focal
object of the present article overlapped by less than
17 months. Eliakim Hastings Moore2 was an impor-
tant figure of American mathematics at the end of 19th
and beginning of 20th centuries, known for his contribu-
tions to abstract algebra, algebraic geometry, analysis,
geometry, integral equations, linear algebra, and num-
ber theory. He founded the Chicago branch of the Amer-
ican Mathematical Society and served as the Society’s
sixth President (1901–1902). He also brought to life the
Transactions of the AMS, a journal which has been con-
tinuously published since 1900. In 2002 AMS honored
him by establishing a prize—E.H. Moore Research Arti-
cle Prize—awarded every three years for an outstand-
ing research article to have appeared in one of the AMS
primary research journals. In 1955 Roger Penrose was a
student at The College of St John the Evangelist in the
University of Cambridge. His subsequent most distin-
guished scientific contributions concern general relativ-
ity and cosmology. Penrose has received several prizes
and awards for his achievements, including the Nobel
Prize in Physics 2020 “for the discovery that black hole
formation is a robust prediction of the general theory
of relativity”. Interestingly, according to the Mathemat-
ics Genealogy Project Moore and Penrose had similar
number of Ph.D. students, with 31 attributed to Moore

2 Biographical information, a discussion on his scientific
interests as well as a list of publications of Eliakim Hast-
ings Moore are available in obituaries Bliss (1933, 1934).
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and 33 to Penrose. However, the database lists 26217
descendants of Moore and 203 of Penrose.

Since the work Penrose (1955) was published, the
Moore–Penrose inverse focuses attention of researchers
representing a variety of—often seemingly distant—
science branches. Efforts of the researchers concen-
trate on both, purely theoretical investigations aimed
at acquiring possibly deep knowledge on the features
of this concept, its generalizations, and properties, and
on explorations of the possibilities it offers to solve real
problems emerging in a wide range of research areas. In
the present article, after a brief introduction in the next
section, we provide a concise review of the up-to-date
literature, shading a spotlight at the role the Moore–
Penrose inverse plays in physics and related research
areas 100 years after it was first defined.

2 Definitions of the Moore–Penrose inverse
of a matrix

In the literature referring to the notion of the Moore–
Penrose inverse the authors most often recall its def-
inition as it was formulated in Penrose (1955). The
definition, based on four matrix equations known
now as the Penrose conditions, is recalled below.
The superscript ∗ stands therein for the conjugate
transpose (Hermitian transpose) of a matrix argu-
ment.

Definition of the Moore–Penrose inverse accord-
ing to Penrose (1955). Let A be an m × n com-
plex matrix. Then the Moore–Penrose inverse of A is
the matrix A† satisfying the following (Penrose) condi-
tions:

AA†A = A, A†AA† = A†,

AA† = (AA†)
∗
,A†A = (A†A)

∗
. (1)

The system of matrix Eqs. (1) is consistent, which
means that every matrix A has its Moore–Penrose
inverse A†. Furthermore, the inverse is unique, i.e., for
every matrix A there exists exactly one A†, which sat-
isfies Eqs. (1); if A is square and nonsingular, then
A† = A−1. Example 1 provided in “Appendix A”
gives an insight on how the set of matrices satisfy-
ing the Penrose conditions gets narrower as subse-
quent Penrose conditions are imposed, reaching one
element set {A†} when all four conditions are ful-
filled.

In the definition of the inverse formulated in Moore
(1920) (called by the author the “general reciprocal”)
rather awkward notation was used. Below the definition
is restated using more modern notation.

Definition of the Moore–Penrose inverse accord-
ing to Moore (1920). Let A be an m × n complex
matrix. Then the Moore–Penrose inverse of A is the
matrix A† satisfying the following conditions:

AA† = PA, A†A = PA∗ ,

where PA and PA∗ denote the orthogonal projectors
onto column spaces (ranges) of A and A∗, respec-
tively.

An advantage of the Penrose definition of the inverse
is that it enables to specify various (not unique) gen-
eralized inverses, which satisfy certain subsets of the
four Penrose conditions. Some of such inverses proved
to arise naturally and play distinguished roles in a vari-
ety of considerations, and occur in the literature under
their own names. For example, the inverses satisfy-
ing: the first Penrose condition are known as inner,
the second condition as outer3, the first two condi-
tions as reflexive, the first three conditions as nor-
malized, the first and third condition as least squares,
whereas the first and fourth as minimum norm. On the
other hand, a valuable feature of the Moore’s version
of the definition is that it constitutes a direct bridge
between algebraic notions (to which matrices belong)
and geometric notions (to which projections belong).
This link proved to be an extremely useful property of
the Moore–Penrose inverse extensively utilized in the
literature.

A discussion on algebraic properties of the Moore–
Penrose inverse is beyond the scope of the present arti-
cle. An interested reader is referred to quite a rich lit-
erature on the subject published over the years, for
instance to one of the classical monographs: Ben-Israel
and Greville (2003), Campbell and Meyer (2009) or
[Rao and Mitra4 (1971)]5. A subjective selection of fea-
tures of the inverse from the perspective of its links with
physics was presented in Barata and Hussein (2012),
whereas an original glance at the notion was put up in
Horn (2018).

3 Without going into details, it is worth pointing out
that the outer generalized inverses enjoy several impor-
tant applications, e.g., in iterative methods of solving non-
linear matrix equations, approximations of ill-posed (ill-
conditioned) problems, or distribution of quadratic forms;
for more detailed information see, e.g., Xia et al. (2016)
and Getson and Hsuan (1988). Interestingly, not only the
Moore–Penrose inverse, but also several other unique gen-
eralized inverses known in the literature (e.g., group, Drazin,
Bott–Duffin, generalized Bott–Duffin, core, generalized core
(also known as Baksalary–Trenkler) inverses) belong to the
set of outer inverses.
4 Calyampudi Radhakrishna Rao, an Indian-American
mathematician and statistician who celebrated his 100th
birthday on September 10, 2020. Among countless distinc-
tions and honorary degrees conferred to Rao is the US
National Medal of Science awarded in 2002 by President
George W. Bush.
5 The book Generalized Inverse of Matrices and Its Appli-
cations by C. Radhakrishna Rao and Sujit Kumar Mitra
published in 1971 was seminal at the time and for years was
considered to be the key source of information on general-
ized inverses.
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Fig. 1 Number of papers published, in whose titles or abstracts occurs the phrase “Moore–Penrose inverse” according to
Elsevier Scopus (as of October 2020)

3 Applications of the Moore–Penrose
inverse in physics: literature overview

The number of published works, in which the notion of
the Moore–Penrose inverse is utilized is steadily increas-
ing, which is well reflected by Fig. 1. The graph concerns
both, the publications of purely theoretical nature as
well as those concerned with applications, but the same
increasing tendency characterizes also each of these sub-
sets.

Probably the best known application of the Moore–
Penrose matrix inverse is concerned with the least
squares method utilized in most research areas, in which
mathematical methods are used; see Penrose (1956),
where such an applicability of the inverse was indi-
cated. As the principles of the least squares method are
usually credited to Carl Friedrich Gauß (1777–1855)6,
the Moore–Penrose inverse can be viewed as a liaison
between the mathematical tool whose roots reach back
to the end of 18th century (i.e., the times before linear
algebra as such existed) and its present applications
in modern (rather remote) research areas of applied
origin. The role of the Moore–Penrose inverse in the
least squares method is briefly outlined in Appendix B.
Least squares, similarly as linear programming, can be
considered to be a subclass of convex optimization; a
reader interested in taking a glance at the least squares
methods from a perspective a of convex optimization
is advised to look into [Boyd and Vandenberghe 2004,
Chapter 4].

An everlasting interest in the least squares method
is well reflected by a immutable stream of articles, in
which the method is utilized and most often plays a
relevant role. Regarding recent research within broadly
understood physics, exemplary applications of the
method can be encountered in the following articles:

6 For a dispute over the priority of the discovery of the
method see Stigler (1981).

Chou et al. (2018) proposing a framework for privacy
preserving compressive analysis (which exploits formu-
lae for the Moore–Penrose inverse of columnwise par-
titioned matrices), Gaylord and Kilby (2004) speci-
fying a procedure of measuring optical transmittance
of photonic crystals, Huang et al. (2006) introduc-
ing the extreme learning machine algorithm, Le Bigot
et al. (2008) presenting high-precision energy level cal-
culations in atomic hydrogen and deuterium, Ordones
et al. (2019) deriving frequency transfer function for-
malism for phase-shifting algorithms, Sahoo and Gan-
guly (2015) optimizing the linear Glauber model to
analyse kinetic properties of an arbitrary Ising sys-
tem, Stanimirović et al. (2013) introducing a computa-
tional method of the digital image restoration, Wang
et al. (1993) identifying sources of neuronal activity
within the brain from measurements of the extracra-
nial magnetic field, Wang and Zhang (2012) deriv-
ing an online linear discriminant analysis algorithm
(which exploits formulae for the Moore–Penrose inverse
of modified matrices), and White et al. (2014) elaborat-
ing a method for computing the initial post-buckling
response of variable-stiffness cylindrical panels (even
though the least squares method was not explicitly
mentioned in the paper, we conclude it was exploited
from remarks on pp. 141 and 143 stating that the sys-
tems of equations solved were overdetermined).

The usefulness of the Moore–Penrose inverse in the
least squares method is hard to overestimate, but it
would be a misfortune to overlook other advantages
the notion offers to the researchers of diverse back-
ground. In what follows selected publications from a
rich set of articles demonstrating applications of the
Moore–Penrose inverse in physics and related branches
are briefly discussed.

Udwadia and Kalaba (1992) considered equations
of motions of a classical dynamical system with con-
straints of different nature (holonomic and non-holonomic,
scleronomic and reonomic, catastatyc and acatastatyc)
by means of an approach (original at the time) based on
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the Moore–Penrose matrix inverse. The main result of
the paper, which the authors entitled “new fundamen-
tal principle of Lagrangian mechanics” [Udwadia and
Kalaba 1992, p. 409] reads:

The motion of a discrete dynamical system sub-
ject to constraints evolves in such a way that the
deviations of its accelerations from those it would
have if there were no constraints, are directly pro-
portional to the extent to which the accelerations
corresponding to its unconstrained motion do not
satisfy the constraints; the matrix of proportional-
ity is the Moore–Penrose inverse of the constraints
matrix...

Another thought-provoking statement in Udwadia and
Kalaba (1992) is formulated at the end of the paper:

Little did Moore and Penrose realize at the time,
that their invention of generalized inverses would
play such a fundamental role in Nature’s design; for
it is these seemingly abstract generalized inverses,
that provide the key to understanding the complex
interactions between impressed forces and the con-
straints.

The article Udwadia and Kalaba (1992) inspired
other researchers to exploit the formalism referring to
the Moore–Penrose inverse to deal with the problems
concerned with dynamics of classical physical systems,
which resulted in a number of papers belonging to this
stream of considerations. Summary of the work carried
out by Udwadia and Kalaba is provided in an arti-
cle Udwadia and Kalaba (2002) as well as in a mono-
graph Udwadia and Kalaba (2008). Subsequent papers
belonging to this stream include inter alia: Bajodah
et al. (2005), Cariñena and Fernández-Núñez (2006,
2010), Lee et al. (2009), Marques et al. (2017), and
Udwadia and Phohomsiri (2006, 2007).

Further papers demonstrating applications of the
Moore–Penrose matrix inverse within the scope of the-
oretical physics include, among other, articles: Beylkin
et al. (2008), where the formulae for the inverse of
modified matrices were exploited in a Green’s func-
tion iteration algorithm introduced to solve the time-
independent, multiparticle Schrödinger equation, He
et al. (2012), which introduced phase-entanglement
and phase-squeezing criteria for two bosonic fields that
are robust against a number of fluctuations using the
inverse to normalize the particle number operator,
Huang and Li (2020), where formulae for the resis-
tance distance and Kirchhoff index of a linear hexagonal
(cylinder) chain were derived by means of the inverses of
Laplacian matrices, Kametaka et al. (2015), where the
inverse of singular discrete Laplacian was used to solve
difference equations to estimate a maximal deviation of
a carbon atom from the steady state in C60 fullerene
buckyball, Kirkland (2015) dealing with a quantum
state transfer in a quantum walk on a graph, with the
inverse used to derive expressions for the first and sec-
ond partial derivatives of the fidelity of the transfer
with respect to a weight of an edge, Kougioumtzoglou

et al. (2017), where an inverse based frequency response
function was introduced to generalize frequency domain
random vibration solution methodologies to account
for linear and nonlinear structural systems with sin-
gular matrices, Lian et al. (2019), where the inverse
was exploited for calculating charge density distribu-
tion through Hartree potential to disclose the phys-
ical mechanism of electrostatic potential anomaly in
2D Janus transition metal dichalcogenides, McCartin
(2009) reexpressing the Rayleigh–Schrödinger pertur-
bation theory procedure in terms of the inverse, Meister
et al. (2014), where the inverse was used to formulate
an optimal control algorithm with a control subspace
defined by a superposition of arbitrary waveforms, Pig-
nier et al. (2017), where a model of an aeroacoustic
sound source was created based on compressible flow
simulations, with the inverse used to compute the sound
source strengths, Ranjan and Zhang (2013) explor-
ing the geometry of complex networks in terms of an
Euclidean embedding represented by the inverse of its
graph Laplacian, Yang et al. (2018), where the inverse
was used to solve an equilibrium equation originating
in an empirical mode decomposition method combin-
ing the static and dynamic information for structural
damage detection, and Yang et al. (2020), where an
expression for the inverse of Laplacian matrices of two
connected weighted graphs was established and utilized
to derive a recursion formula for the resistance distance.

A numerous set of papers reveals applications of the
Moore–Penrose matrix inverse to analyse experimen-
tal data, often with the use of statistical methods and
numerical calculations. This was the case in the follow-
ing articles: Anand et al. (2009) dealing with an opti-
mization of the signal to noise ratio for NMR data,
Bedini et al. (2005) concerned with a separation of
correlated astrophysical sources from measured signals,
Saha and Aluri (2016) and Saha et al. (2008), where
the already mentioned formulae for the Moore–Penrose
inverse of modified matrices were exploited in an elab-
oration of the cosmic microwave background data.

An exemplary result confirming advantages resulting
from the utilization of the Moore–Penrose inverse in the
data analysis is provided on Fig. 2. The plot was drawn
from Nara and Ito (2014), where the problem of a mag-
netic dipole localization was considered. A neodymium
magnet was moved along the coordinate denoted by x
in an experimental setup designed to measure the mag-
netic field generated by the dipole. The experimental
data was afterwards used to determine the localization
of the dipole by solving a system of linear equations, the
so-called Euler’s equations. The system was solved inde-
pendently with and without using the Moore–Penrose
inverse of a 3×3 coefficient matrix (the theory indicates
that for the considered orientation of the dipole the
coefficient matrix should be singular). The outcomes of
the investigations are presented on Fig. 2 and the find-
ings were summarized by the authors as follows [Nara
and Ito 2014, p. 3]:

Clearly, one finds that localization becomes more
accurate and stable when using the generalized
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Fig. 2 Localization error with and without using the
Moore–Penrose inverse. Reproduced from [Nara T. and Ito
W. 2014. Moore-Penrose generalized inverse of the gradient
tensor in Euler’s equation for locating a magnetic dipole. J.

Appl. Phys. 115: no. 17E504, Fig. 4], with the permission
of AIP Publishing. https://aip.scitation.org/doi/10.1063/1.
4861675

[Moore–Penrose] inverse than when using a simple
inverse.

The Moore–Penrose matrix inverse is beneficially
exploited also in several other, often interdisciplinary,
research areas, such as robotics, inverse problems, digi-
tal image restoration, diffuse optical imaging, and neu-
ral networks. Applications of the inverse in robotics deal
first of all with mechanics. A number of illustrative
examples were discussed in an overview article Doty
et al. (1993), which is devoted to the utilization of gen-
eralized inverses in robotics. Further examples of the
applications along with extensive lists of references were
provided in a paper Zhao and Gao (2009) and a mono-
graph Sciavicco and Siciliano (2000).

One of the papers, in which an inverse problem was
considered, namely Nara and Ito (2014), was already
recalled, but also other articles from among those listed
above fall into this category. Further relevant refer-
ences in this topic include a paper Potthast and beim
Graben (2009), where the Moore–Penrose inverse was
used to solve the so-called Amari equation in order to
construct synaptic weight kernels yielding a prescribed
neural field dynamics. An extensive review of inverse
problems mostly in geophysics, but also with several
examples originating from different branches of physics,
some of which involve generalized inverses of matrices,
was provided in Snieder and Trampert (1999).

Regarding the digital image restoration, besides an
already mentioned article Stanimirović et al. (2013),
it is worth pointing out a paper Chountasis et al.
(2009), where the Moore–Penrose inverse based restora-
tion algorithm was introduced and applied to restore
an X-ray image either blurred or with a salt and pep-
per noise. Applications of the Moore–Penrose inverse
in the image restoration were discussed also in a book
Stanimirović (2018), which contains an overview of the
algorithms used to determine generalized inverses. In
this light, it is worth pointing out a paper Soleimani
et al. (2015), not mentioned in Stanimirović (2018),
in which iterative methods for computing the Moore–
Penrose inverse in balancing chemical equations were
considered.

Diffuse optical imaging (both, tomography and spec-
troscopy) also faces problems, in which the Moore–
Penrose inverse proves to be helpful. They concern an
image reconstruction from data dealing with a propaga-
tion of photons traveling through scattering/absorbing
medium (the task which ranges from a design and opti-
mization of experimental setups (instruments) to data
analysis). Exemplary articles, in which issues of the
kind are addressed with the help of the Moore–Penrose
inverse include, e.g., Blaney et al. (2020a, b) and Shihab
Uddin et al. (2017).

A paper concerned with neural networks, i.e., Huang
et al. (2006), was already mentioned above to point
out its link with the least squares method. Additional
relevant references in this area include papers Guerra
and Coelho (2008), focused on elaboration of learning
algorithms based on particle swarm optimization, Yin
et al. (2017), dealing with a trajectory tracking control
of a marine surface vessel, and Zhou et al. (2016), where
a traffic matrix estimation was considered.

The problems concerned with the computations of
the Moore–Penrose inverse are beyond the scope of
the present article. Nevertheless, due to their relevance,
few further remarks and important references are pro-
vided, so that an interested reader knows where to look
for additional information. Let us first mention that
popular calculation packages, like Matlab or Mathe-
matica, offer built-in functions to calculate the inverse
of symbolic and numerical matrices. The implementa-
tion of those functions is based on the singular value
decomposition7 (SVD). This seems to be a well justified
method, as when SVD of a matrix is known, its Moore–
Penrose inverse is obtained straightforwardly, by taking
an inverse of a diagonal matrix having nonzero singu-
lar values of the matrix on its diagonal. However, the
SVD based algorithms, even though accurate, require
relatively large amount of computational resource; for
further details see e.g., Chen and Wang (2011), Jhurani

7 In some sources, the definition of the Moore–Penrose
inverse is based on the singular value decomposition; see
e.g., [Boyd and Vandenberghe 2004, p. 649].
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and Demkowicz (2012), or Katsikis and Pappas (2008).
Thus, other computation algorithms were proposed;
for discussion of their features and their comparison
see Stanimirović (2018). Another fact worth mention-
ing in the context of the computations of the Moore–
Penrose inverse is its discontinuity, which is reflected
by an observation that for x ∈ R, limx→0+ x†=∞,
limx→0− x†= − ∞, and 0† = 0. It seems that the dis-
continuity issues did not have an impact on the appli-
cations of the inverse in any of the papers discussed in
the present article, but they should definitely be borne
in mind when the computations of the inverse are per-
formed.

4 Summary

In Moore (1920) there is no mentioning of possible
applications of the “generalized reciprocal”, whereas
the definition of the “generalized inverse” in Penrose
(1955) arose from the role it plays in solutions of certain
matrix equations. The usefulness of the inverse in the
least squares method was recognized in Penrose (1956).
Likely, the first applications of the Moore–Penrose
inverse to deal with a physical phenomenon concerned
electrical engineering and were reported in the six-
ties of the previous century; for details see [Campbell
and Meyer 2009, Chapter 5] or [Rao and Mitra 1971,
Chapter 10]. Over the years, the applicability of the
inverse clearly reached far above those initial ideas,
but in most cases these applications are still concerned
with a solvability of various matrix equations (differen-
tial, difference, integral, integro-differential). However,
it also happens that the inverse occurs naturally in some
derivations, without being intentionally recalled. This
was the case, for example, in a paper Rançon and Balog
(2019), which deals with an existence of an effective
action in statistical field theory (the Legendre trans-
form of the cumulant generating function) in presence
of non-linear local constraints; in the Abstract of the
article it was remarked:

...we naturally obtain that the second derivative of
the effective action is the Moore–Penrose pseudo-
inverse of the correlation function.

Most of the papers recalled above were published
in the 21st century, that is at least eighty years after
the Moore–Penrose inverse was first defined. In each
of them the inverse plays an important role, in some
it was indicated that the usage of the inverse is the
factor, which not only distinguishes the paper from
earlier works on the same topic, but which in fact
enabled to distinctly improve former results. An over-
all conclusion originating from these articles is that the
applications of the Moore–Penrose inverse in physics
equally well concern theoretical as experimental inves-
tigations. Furthermore, also the spatial scale of the phe-
nomena is not a distinctive factor, as applications of
the inverse range from subatomic to astronomical scale
phenomena. Another fact worth mentioning in this con-

text is that the original Moore–Penrose inverse was
over the years generalized and/or extended to various
mathematical settings8, such as operator algebras, C*-
algebras, rings or tensors, with some of these succes-
sors of the matrix ancestor introduced exclusively as
a response to the problems emerging in physics. An
explicit illustration of such an application driven devel-
opment was provided in a paper Cao et al. (2016), in
which the Moore–Penrose inverse was generalized to the
cases of symmetric tensors on Lorentz manifolds and
utilized to solve the equations of motion occurring in
the theory of massive gravity.

There is no doubt that further seminal contributions
to the research involving the Moore–Penrose inverse
should be anticipated, which will still, on the one hand,
reinforce the theoretical fundamentals of the concept
and, on the other hand, broaden the spectrum of its
possible applications in physics and related science
branches. Standing for a hundred years on the front-
line of physics research, the Centenarian—a fruit of an
indisputable mathematical intuition of Eliakim Hast-
ings Moore and Sir Roger Penrose—shows no sign of
an exhaustion!
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Appendix A

The example below gives an insight into how the set of
matrices satisfying the Penrose conditions (1) narrows down
when subsequent conditions are imposed. As expected, only
when all four conditions are fulfilled, the set reduces to the
one element set {A†}.

Example 1 Let A and B be 2 × 2 matrices of the forms

A =

(
0 1
0 1

)
and B =

(
a b
c d

)
, (A1)

where a, b, c, d are complex numbers. Then B is:

(a) an inner inverse of A (i.e., satisfies ABA = A) if and
only if c + d = 1;

(b) a reflexive inverse of A (i.e., satisfies ABA = A and
BAB = B) if and only if c + d = 1 and a = c(a + b);

(c) a normalized inverse of A (i.e., satisfies ABA = A,
BAB = B, and (AB)∗ = AB) if and only if a = b,
c = 1

2
, and d = 1

2
;

(d) the Moore–Penrose inverse of A (i.e., satisfies ABA =
A, BAB = B, (AB)∗ = AB, and (BA)∗ = BA) if and
only if a = 0, b = 0, c = 1

2
, and d = 1

2
. Thus,

A† =

(
0 0
1
2

1
2

)
.

Appendix B

In what follows we outline a role which the Penrose condi-
tions (1) play in the solvability of the system of m simul-
taneous linear equations with n unknowns, the problem
whose various versions can be encountered in most (if not
all) research areas utilizing mathematical methods. Further
information on the topic can be accessed, for instance, in any
of the monographs: [Ben-Israel and Greville 2003, Chapter
3], [Campbell and Meyer 2009, Chapter 2], [Rao and Mitra
1971, Chapters 2 and 3] or Wang et al. (2018).

Let us consider the system of linear equations

Ax = b, (B1)

where complex m × n matrix A and m × 1 vector b are
known, whereas n × 1 vector x is unknown. Taking into
account the number of possible solutions, we can distinguish
three situations, which might be characterized by rank of the
matrix (A : b), obtained by extending the matrix A by a
column vector b, namely:

(a) The system (B1) is consistent and has exactly one solu-
tion, which happens if and only if rank(A : b) =
rank(A) = n.

(b) The system (B1) is consistent and has infinitely many
solutions, which happens if and only if rank(A : b) =
rank(A) and rank(A) < n. (In such a case, it is often
desired to determine those vectors x in the set of all
solutions, which have minimal Euclidean norm, the so-
called minimum norm solutions.)

(c) The system (B1) is inconsistent and has no solutions,
which happens if and only if rank(A : b) = rank(A)+1.
(In such a case, there are no vectors x for which Ax −
b = 0, but one may determine those vectors x, which
minimize the Euclidean norm of the difference Ax − b,
the so-called least squares solutions.)

The generalized inverses specified by subsets of the four
Penrose conditions (1) provide a handy tool to deal with
each of the situations specified above. This claim is based
on the following facts:

(a) The vector x = Bb is a solution to the system (B1) for
every vector b, for which (B1) is consistent if and only
if B is an inner inverse of A;

(b) The vector x = Bb is a minimum norm solution to
the system (B1) for every vector b, for which (B1) is
consistent if and only if B is a minimum norm inverse
of A (i.e., satisfies ABA = A and (BA)∗ = BA);

(c) The vector x = Bb is a least squares solution to the
system (B1) if and only if B is a least squares inverse of
A (i.e., satisfies ABA = A and (AB)∗ = AB);

(d) The vector x = Bb is the minimum norm least squares
solution to the system (B1) if and only if B is the Moore–
Penrose inverse of A.

In what follows we provide a numerical example demon-
strating how the theory works in practice.

Example 2 Consider the system of linear equations of the
form (B1), where A is as specified in (A1) and b is a nonzero

vector of the form b =

(
α
β

)
, with complex numbers α and

β. Let us distinguish two disjoint situations, namely when
α = β and α �= β. In the former of them, the system (B1) is
consistent and has infinitely many solutions. Then x = Bb,
with B as defined in (A1), is a solution to (B1) if and only
if B is an inner inverse of A, i.e.,

B =

(
a b
c 1 − c

)
, (B2)

in which case x = α

(
e
1

)
for any complex number e. Among

those solutions, x = Bb has the least Euclidean norm if and
only if B is a minimum norm inverse of A, i.e.,

B =

(
a −a
c 1 − c

)
, (B3)

in which case x = α

(
0
1

)
. Clearly, the Euclidean norm of x

then equals |α|.
In the latter situation, when α �= β, the system (B1) is

inconsistent. In this case, x = Bb is a least squares solution
to (B1) if and only if B is a least squares inverse of A, i.e.,

B =

(
a b
1
2

1
2

)
, (B4)

in which case x =

(
aα + bβ
1
2
(α + β)

)
. For such an x, the Euclidean

norm of the difference Ax − b equals 1√
2
|α − β|.

A conclusive observation is that the vector

x = A†b =

(
0

1
2
(α + β)

)

constitutes a minimum norm least squares solution to the
system (B1).

It is noteworthy that the unique Moore–Penrose inverse
can be utilized to represent classes of various not necessarily
unique generalized inverses. For example, the set of all inner

123



9 Page 8 of 10 Eur. Phys. J. H (2021) 46 :9

generalized inverses of an m×n matrix A can be represented
as

{A† + (In − A†A)V + W(Im − AA†), for arbitrary

n × m matrices V,W},

(B5)

the set of all minimum norm generalized inverses of A as

{A† + W(Im − AA†), for arbitrary n × m matrix W},

(B6)

whereas the set of all least squares generalized inverses of
A as

{A† + (In − A†A)V, for arbitrary n × m matrix V}.

(B7)

It can be verified that general representations provided in
(B5)–(B7) entail expressions (B2)–(B4), respectively.
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janović. 2013. Removal of blur in images based on least
squares solutions. Mathematical Methods in Applied
Sciences 36: 2280–2296.

Stigler, S.M. 1981. Gauss and the invention of least squares.
Annals of Statistics 9: 465–474.

Udwadia, F.E., and R.E. Kalaba. 1992. A new perspective
on constrained motion. Proceedings of the Royal Society
A 439: 407–410.

Udwadia, F.E., and R.E. Kalaba. 2002. What is the general
form of the explicit equations of motion for constrained
mechanical systems? Journal of Applied Mechanics 69:
335–339.

Udwadia, F.E., and R.E. Kalaba. 2008. Analytical dynam-
ics: A new approach. Cambridge: Cambridge University
Press.

Udwadia, F.E., and P. Phohomsiri. 2006. Explicit equa-
tions of motion for constrained mechanical systems with

123

https://aip.scitation.org/doi/10.1063/1.4861675
https://aip.scitation.org/doi/10.1063/1.4861675


9 Page 10 of 10 Eur. Phys. J. H (2021) 46 :9

singular mass matrices and applications to multi-body
dynamics. Proceedings of the Royal Society A 462: 2097–
2117.

Udwadia, F.E., and P. Phohomsiri. 2007. Explicit Poincaré
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