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Abstract. This commentary reflects on the 1930 general theory of Léon
Rosenfeld dealing with phase-space constraints. We start with a short
biography of Rosenfeld and his motivation for this article in the con-
text of ideas pursued by W. Pauli, F. Klein, E. Noether. We then com-
ment on Rosenfeld’s General Theory dealing with symmetries and con-
straints, symmetry generators, conservation laws and the construction
of a Hamiltonian in the case of phase-space constraints. It is remark-
able that he was able to derive expressions for all phase space symmetry
generators without making explicit reference to the generator of time
evolution. In his Applications, Rosenfeld treated the general relativis-
tic example of Einstein-Maxwell-Dirac theory. We show, that although
Rosenfeld refrained from fully applying his general findings to this ex-
ample, he could have obtained the Hamiltonian. Many of Rosenfeld’s
discoveries were re-developed or re-discovered by others two decades
later, yet as we show there remain additional firsts that are still not
recognized in the community.

1 Introduction

Léon Rosenfeld’s 1930 Annalen der Physik paper [1]' developed a comprehensive
Hamiltonian theory to deal with local symmetries that arise in Lagrangian field the-
ory. Indeed, to a surprising degree he established the foundational principles that
would later be rediscovered and in some respects extended by the individuals who
until recently have been recognized as the inventors of the methods of constrained
Hamiltonian dynamics, Peter Bergmann and Paul Dirac. Not only did he provide
the tools to deal with the only local gauge symmetries that were known at the time,
namely local U(1) and local Lorentz covariance, but he also established the technique
for translating into a Hamiltonian description the general covariance under arbitrary
spacetime coordinate transformations of Einstein’s general theory of relativity. Some
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of this pioneering work either became known or was independently rediscovered over
two decades later. But for unknown reasons Rosenfeld never claimed ownership, nor
did he join later efforts to exploit his techniques in pursuing canonical approaches to
quantum gravity?2.

He was brought to Zurich in 1929 by Wolfgang Pauli with the express purpose of
helping to justify procedures that had been employed by Heisenberg and Pauli in their
groundbreaking papers on quantum electrodynamical field theory. With the under-
standing that second quantization should naturally include all known fundamental
interactions, Rosenfeld and Pauli apparently jointly decided that a new procedure
was needed that would also take into account the dynamics of Einstein’s gravitational
field in interaction with electromagnetism and charged spinorial source fields.

Among Rosenfeld’s achievements are the following: He was the first to (1) Show
that primary phase space constraints always arise as a consequence of local Lagrangian
symmetries; (2) Show that local symmetries always involve singular Lagrangians;
(3) Exploit the identities that result from the symmetry transformation properties
of the Lagrangian® to construct the constrained Hamiltonian that contains arbitrary
spacetime functions; (4) Translate the vanishing conserved charge that arises as a con-
sequence of symmetry transformations of the Lagrangian into a phase space expres-
sion; (5) Show explicitly that this symmetry generator, which we call the Rosenfeld-
Noether generator, generates the correct infinitesimal transformations of all of the
phase space variables; (6) Derive secondary and higher constraints through the re-
quirement that primary constraints be preserved in time; (7) Show how to construct
the constrained Hamiltonian and general covariance generator for general relativity —
both for vacuum relativity and gravitation in dynamical interaction with the electro-
magnetic field and charged spinorial sources. Most of the advances listed here a now
accepted wisdom — yet none have until recently been attributed to Rosenfeld.

Following a brief introduction to Rosenfeld in Section 2 we will illustrate the
seven accomplishments using two familiar simple models, the free electromagnetic
field and the relativistic free particle. Then in Section 4 we will present a detailed
analysis of the first six of these achievements, referring to the general theory in Part 1
of his article. Where possible we employ Rosenfeld’s notation. Section 5 is devoted
to a description of the seventh achievement as it is related to Rosenfeld’s general
relativistic application. In Section 6 we will take Rosenfeld’s general findings and apply
them to his example. Here we revert to modern notation and construct in detail the
Hamiltonian and symmetry generators for Rosenfeld’s tetrad gravity in interaction
with the electromagnetic and spinorial fields. It is curious that he did not give the
explicit expressions for the Hamiltonian in either the 1930 paper or the 1932 follow-
up [2] in which he reviewed the then current status of quantum electrodynamics. In
an Appendix we will give a capsule history of the later, better-known development of
constrained Hamiltonian dynamics.

Before proceeding, it is clear from the title of Rosenfeld’s article that he aimed at
quantizing the Einstein-Maxwell-Dirac field. From the modern perspective he could
perhaps be accused of a certain naivete in supposing that his fields could be pro-
moted to quantum mechanical q-numbers through the simple expedient of forming
a self-adjoint Hermitian operator by taking one half of the sum of the field operator
and its Hermitian adjoint. But this is what he did in his equation preceding (R10).

2 He did present an unpublished seminar entitled “Conservation theorems and invariance
properties of the Lagrangian” in Dublin in May of 1946 where he repeated the invariance
arguments but did not relate the discussion to phase space. Niels Bohr Archive, Rosenfeld
Papers.

3 These identities were first exploited by Felix Klein in the context of general relativity, as
we shall discuss below.
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(Henceforth we will refer to his equations by adding the prefix R). The corresponding
self-adjoint operators are expressed with an underline. This notation tends to make
his text harder to read than necessary. And since, unless otherwise noted, we will be
discussing the classical theory we will omit these underlines.

2 Rosenfeld’s personal background

Léon Rosenfeld was born in 1904 in Charleroi, Belgium. After receiving his bachelor’s
degree at the University of Liege in 1926 he completed his graduate studies in Paris
where under the supervision of Louis de Broglie and Théophile de Donder he began
his exploration of the link between quantum wave mechanics and general relativity?.
Thanks to the effort of de Donder at the 1927 Solvay Conference at Brussels, Rosenfeld
secured a position as an assistant to Max Born in Go6ttingen. In Goéttingen he found
accomodations in the same home as Paul Dirac - who became a hiking partner. Emmy
Noether was apparently temporarily in Russia during this time, and it is not clear
whether he met her. Even if he had, given that her interests had shifted, it is unlikely
that he would have discussed with her the second Noether theorem which plays a
foundational role in this 1930 paper.

This was a period of intense debate and evolving views regarding the recently
established theories of wave and matrix mechanics, and Rosenfeld was ideally placed
amidst the contenders. His position was somewhat unique given his working knowledge
of general relativity and his previous efforts in unifying relativity with the incipient
quantum wave theory. In addition to seeking an assistantship with Niels Bohr he
also wrote to Albert Einstein, proposing that if he were successful with Einstein’s
aid in obtaining a research fellowship from the International Education Board he
work under Einstein’s supervision “on the relations between quantum mechanics and
relativity” °. Einstein replied almost immediately from Berlin, endorsing the project®.
Rosenfeld also sought at the same time an arrangement with Niels Bohr who wrote
back, advising according to Rosenfeld that coming to Copenhagen at the moment
“ was not convenient and I had better postpone it””. Finally he wrote to Wolfgang
Pauli who invited him to come to Zurich. Surprisingly, given Rosenfeld’s general
relativistic background, when asked by Pauli what he wished to do in Zurich, he
replied that he intended to work on a problem involving the optical properties of
metals. But he “got provoked by Pauli to tackle this problem of the quantization of
gravitation and the gravitation effects of light quanta”®. In an autobiographical note
written in 1972 Rosenfeld says that in Zurich, where he arrived in the Spring of 1929,
he “participated in the elaboration of the theory of quantum electrodynamics just
started by Pauli and Heisenberg, and he pursued these studies during the following
decade; his main contributions being a general method of representation of quantized
fields taking explicit account of the symmetry properties of these fields, a general

4 For more on Rosenfeld’s life and collaborations see [3].

5 “Ich beschiftige mich mit den Beziehungen der Quantenmechanik zur Relativitétstheorie.
Thre Hilfe ware mir dabei von der grossten Wichtigkeit. Falls Sie damit einverstanden sind,
dass ich unter Threr Leitung arbeite, bitte ich Sie um eine briefliche Mitteilung, die ich
meinem Antrag beifiigen muss”. Letter from Rosenfeld to Einstein, dated 26 April, 1928,
Niels Bohr Archive, Rosenfeld Papers.

6 “Es freut mich, dass Sie iiber den von Ihnen genannten Gegenstand im Zusammen-
hang mit mir Arbeiten wollen. Es wére gewiss erfreulich, wenn der International Education
Board Thnen zur Ermoglichung Thres Aufenhaltes und Threr Arbeit in Berlin eine Fellowship
gewahren wiirde.” | dated 3 May, 1928, Niels Bohr Archive, Rosenfeld Papers

" Archive for the History of Quantum Physics (AHQP), 19 July, 1963, p. 5.

8 AHQP, 19 July, 1963, p. 8.
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method for constructing the energy-momentum tensor of any field, a discussion of the
implications of quantization for the gravitational field ...”?:10,

3 Two illustrative examples

Before presenting our detailed discussion of Rosenfeld’s general theory, we will illus-
trate its relevance with two familiar examples. The first is the free electromagnetic
field in flat spacetime. In the electromagnetic case the dynamical field is the vector
potential A, with associated field tensor Fj,, = A, , — A,, where A,, := g‘;‘g.
(We take the metric to have diagonal elements (1,—1,—1,—1)). The flat space free
electromagnetic field Lagrangian is

1
Lem = _4F;L1/F'uu~ (1)

This Lagrangian is invariant under U(1) gauge transformations with infinitesimal
variations

6A, =¢,. (2)

The statement that the Lagrangian is invariant under the local symmetry (2) is the
identity

OLem OLem
6‘C€m = aA 6 (Alh”) = aA 5»[“’ = O (3>
w,v v
(Note that OLem — fmwv — _Fvk and the identity results as a consequence of this

A,
anti-symmetry). In particular, the coefficient of each distinct £ 3 vanishes identically
when these coefficients are understood as functions of A, ,. But now we introduce

momenta p® conjugate to the Ag. Defining A, = Ay o, the momenta are defined

to be p® = %ﬁjm. The seven Rosenfeld results applied to this model, numbered in

parentheses, are

(1) There is a primary constraint expressing the vanishing of the coefficient of & .
It is 8;;;" =pY =0.

(2) In making the transition to a Hamiltonian version of free electromagnetism we
would like to be able to solve the defining equations for the momentum for the
velocities A, in terms of the A,, A, , (where a is a spatial index), and p®. This is

clearly not possible in this case since Ay does not even appear in these relations.
Another way of viewing this problem is to note that the defining relations are
linear in the velocities and take the form

o 0?Lem i O?Lem

= .7 Ag+ ,
LY WY, PRRY WY Pl

then to solve for the velocities in terms of the momenta we would need to find

. . . 2 . . . . .
the reciprocal of the Hessian matrix 8?45521 . But this matrix is singular since
a0Ap
Lo _ 0p°
9AadAy — 9Aq
Lagrangian under the gauge transformation (2).

= 0. It is singular as a consequence of the invariance of the

9 Niels Bohr Archive, Rosenfeld Papers.
10 For additional quantum electrodynamical background to Rosenfeld’s 1930 paper see [4].
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(3) Since the time derivative of the nought component of the potential does not ap-
pear in the momenta, we can choose any value we wish for it without violating
these relations. So let us take Ay = A where X is an arbitrary spacetime depen-
dent function. The remaining velocities can be solved, yielding A, = p* + V.
Substituting into the canonical Hamiltonian we find

H= paAa - ‘cem(Au,aa Ab(pca ‘/,d)] =

(p®p® + ByBy) + p*Ag.a + M°.
9

The field B, = €4pcAp,c is the magnetic field.
(4) The identity (3) can be conveniently rewritten in terms of the Euler-Lagrange

equations,
0 OLem OLem .
—£, v 0A, , + (814%,, &u) 3 =0. (4)

We deduce that when the Euler-Lagrange equations are satisfied we have a con-
served charge

Mepm = /d3w (poé - pf‘af) :

where we have assumed that the arbitrary £ go to zero at spatial infinity. Since
¢ also has arbitrary time dependence it is clear that in addition to the primary
constraint p® = 0 we must also have a secondary constraint %, =0.

(5) The constraint M., generates the infinitesimal symmetry transformations
6A, = {0A, Mem } =&,

and dp® = 0.
(6) The deduction (4) may be understood as a derivation of a higher order(secondary)

constraint in the sense that if we write M, = [ d®z (poé + N 6), then we have
U‘lit./\/lem = d*x (poé +poé + N¢ —|—N§) = 0. The vanishing of the coefficient of

€ then yields p° = —N = 0.
(7) Since this model is not generally covariant the achievement number seven is not
relevant.

Our next model is generally covariant, and it will serve to display some important
differences with models that obey internal gauge symmetries like the U(1) symmetry.
We consider the parameterized free relativistic particle. Let «#(6) represent the par-
ticle spacetime trajectory parameterized by 6. Under a reparameterization 8’ = f(0),
where f is an arbitrary positive definite function, z* transforms as a scalar,

21(0') = 2 (6).

We introduce an auxiliary variable N () and we assume that it transforms as a scalar

density of weight one,
g |

V@) =50 4y

Then the particle Lagrangian takes the form

. 1 da* dx m2N
L@ N)= g0 g0 a8 ~ 2 (5)
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where ¥ := df;. It is quadratic in the velocities and Rosenfeld’s general theory is
therefore directly applicable. The Lagrangian transforms as a scalar density of weight
one under parameterizations, i.e.,

g (N ) =, (0 ) -1, (Y0 ) o)

Consequently, the equations of motion are covariant under reparameterizations.
Now consider an infinitesimal reparameterization 8’ = 6 +£(60) with corresponding
variations

ozt (0) := "™ (6 + £(0)) — x* (0) =0,

deh\  dx™(0') dxt
5(d9)._ o~ =€),

and
SN (6) := N' (0 +£(0)) — N(0) = —N(9)E.

Then (6) yields the identity

0Ly . 0L,
Ly + 5 8(@") + ) 7 oN =o. (7)

Again it will be convenient to express this identity in terms of the Euler-Lagrange
equations. For this purpose we introduce the 6* variation associated with the infinites-
imal reparameterization (it is actually minus the Lie derivative). To save writing we
will represent the variables z# and N by a generic Q,. For an arbitrary function of
variables @ we define

5 PB(0) := D' () — D(0) = 6D(0) — B(O)E(H).

This has the property that §* (@) = 1 (5*).
In terms of the @, the identity (7) is

Lé+ v 50, + SL.P 5 (Qa) 0. (8)

aQO‘ Qa

Note that

5 (QQ) — 5 (Qa) = ;ééQa — Qaé.

Thus we may rewrite (8) as

oL,

oL d [ OL .. .
v ( bl Qe+ L =0, (9)

ol 00+ -p5Qa>

0Qa
L _ 0L _ d oL
6Qa — 0Qa  d0 90,
One final rewriting of this identity yields a conserved charge. Substituting 6Q. =
0*Qq + Qo€ we find

where = 0 are the Euler-Lagrange equations.

Logae s Ly

g _
06 06 ) = 0. (10)

iL, . d (0L,
o gy (0.
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Proceeding with Rosenfeld’s achievements applied to this model we have

(1)

—
w
~

4

The second derivative ¢ could arise in (7) only if N were to appear in the
Lagrangian, and this would spoil to reparameterization covariance. Thus we must
oL,

81\5 — OL
The Hessian is singular since o = 0.

have py =

We can take N = A where ) is positive-definite but otherwise an arbitrary function
of 6. The remaining velocities follow from the definitions
oL, w,

Pe= s = N

Solving for # we have
¥ = Npt.

Substituting these velocities into the Hamiltonian we have

. . . N
Hy (9", \) = pui*(p) + o N = Ly(i(p)) = ) (0" +m*) + Apw.
According to (10) the conserved charge associated with the free relativistic par-
ticle is

M, = puéx“ +pNON — puiuf - pNN§ + L€

where we have used the same procedure described in item (3) to obtain a phase
space function involving also the arbitrary function A.
M, generates the correct infinitesimal reparameterization symmetry variations.

0 at = {at, Mp} = —NpH¢ = —aH€.

In the last equality we used the equation of motion. This is the correct 6* variation
for a scalar. Also we have

0*N = {N,M,} = —=N§ = ¢ = —=N{ — N, (12)

where again in the last equality we used the equation of motion. This is the correct
0* variation of a scalar density.

We deduce that in addition to the primary constraint py = 0 we have a secondary
constraint p? + m? = 0.

This is a generally covariant model, and as we shall see, the construction of the
generator of infinitesimal diffeomorphisms does also apply to general relativity. It
is significant, however, that the charge we have obtained only works for infinites-
imal variations. As we shall discuss in detail later, this deficiency is related to the
fact that we need to apply the equations of motion in order to obtain the correct
variations.

Rosenfeld’s original contributions in the general theory

Concerning the invention of constrained Hamiltonian dynamics there is little in the
work of Bergmann [5], Bergmann and Brunings [6], Dirac [7, 8], Bergmann, Penfield,
Schiller, and Zatkis [9], Anderson and Bergmann [10], Heller and Bergmann [11],
and Bergmann and Schiller [12] that was not already achieved or at least anticipated
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by Léon Rosenfeld over twenty years earlier. He also pioneered the field of phase space
symmetry generators.
Rosenfeld assumed that the Lagrangian was quadratic in the field velocities, taking

the form
2L = Qap A PH(Q)Qp.u + 2Qa B (Q) +C(Q), (13)

in his equation (R1). The @ represent arbitrary fields that can have components rep-
resented by the generic index a;, 3, etc. from the beginning of the Greek alphabet. The
, i represents a derivative with respect to the spacetime coordinate. The Lagrangians
considered later by Bergmann, Dirac, and also Arnowitt, Deser, and Misner [13] are of
this form. He contemplated both general coordinate and local gauge transformations.
In his General discussion Rosenfeld uses a latin index for all of these cases. Antic-
ipating his later example we distinguish between descriptors of general coordinate
transformations using a Greek index,

Szt = ¢m, (14)

U(1) transformations with no index £, and local Lorentz transformations with a latin
index £". Rosenfeld does not make this distinction in his abstract formalism, and it
is our hope that this notation will make his article more accessible.

Accordingly, the symmetry variations of the field variables are

¢

5Qu () = car(e, QUE () + 5, Q) 5, + 50, Q)

o (15)

(Rosenfeld actually considered more general variations. See (R2). We shall also repre-

sent the time component with 0 rather than 4, and with these restricted variations we

avoid more complicated expressions like (R18c) where several 4 upper indices appear.)
Rosenfeld lets a “prime” represent the transformed variable, and

0Qq = Qu(x + 6z) — Qa(2).
Rosenfeld also introduced 6* variations with the definition

_ 0P(x)

0" P(x) = 6P(x) v

ox”, (16)

where @ is any functional of z and Q(x) and 8;5;?) is the partial derivative with
respect to the spacetime coordinate. The 0* variations are minus the Lie derivative in
the direction dz”. Utiyama [14] in 1947 followed Rosenfeld’s lead in employing the ¢*
notation. Noether [15] in 1918 denoted these variations in the functional form by 0.
Bergmann [5], beginning in 1949, continued Noether’s use of the § notation. These
variations are now called “active” variations.

Rosenfeld’s analysis is based on the known transformation properties of the
Lagrangian density under the variations (15). He considered two cases that were
relevant to his application.

Rosenfeld’s Case 1 assumes that the Lagrangian transforms as a scalar density
of weight one under arbitrary spacetime coordinate transformations. As he notes in
his equation (R12), this is the statement that under the transformations (14) the
variation of the Lagrangian is 0L = —L£¢#,. This was true for his general relativistic
model in which he coupled the gravitational field in tetrad form to electromagnetism
and a charged spinorial field. This action is manifestly a scalar density even though
it is not the Hilbert action and it is not an invariant under local Lorentz transfor-
mations as we shall see in Section 5. Rosenfeld’s Case 2 incorporates the required
transformation property under this internal gauge transformation. Rosenfeld showed
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how the identities that arise in both cases can be exploited to construct not only the
Hamiltonian but also the phase space generators of infinitesimal coordinate and local
gauge transformations.

We will write the fundamental identities (R12), (R13) and (R14) in a form that
incorporates both Cases 1 and 2 of Rosenfeld. The extra term (6K*) , results from the
fact that under the local Lorentz transformations with descriptors £ the Lagrangian
is not invariant. Indeed, in Rosenfeld’s case 2 in which these variations occur, 6L =
—6 (K#,) = —(0K*") .. The net Lagrangian variation is then

oL oL
0= 5009t g 9(Qun) = —L85 — (K" . (7)

or equivalently

B or oL
- Q X (aQa,V‘SQ“)V 90, Qoonly + £+ OKE) . (18)

where £ — ( oL

50 8Qa> = 0 are the Euler-Lagrange equations and as stated above K

varies only under internal symmetries with descriptors £”. Rosenfeld assumed it be
linear in derivatives of the field,

KH = £ (Q)Qa.p- (19)

In fact, since only 6Q(7) = cor (2, Q)E"(z) comes into play in the variation of IV, it
follows since the identity (17) cannot depend on second derivatives of the " that the
variation of K, takes the form

0K, = (r*eart”) = (Z1E7) 1 (20)
where according to (R73)
ofore afﬁ#p
o= — . 21
r 9Qs Qs+ 90, Qp.p (21)
Thus we will work with the identity (17) in the form
oL oL
oL = 0Qq a —LEH — (THET) . 22
aQa Q aQau (Q yN) 5 ( ’r‘g ),# ( )

This identity incorporates (R12), (R13) and (R75).
Since according to (16)

4 (Qa,u) = (5Qa)7u - Qa,#fﬁ,
we can equivalently write (18) in the form,

oL
0= 10090 (00, 197) o, Qe+ £65+ TE0,. (@)

This relation does not appear explicitly in Rosenfeld’s work, but he then exploited the
several identities that follow from these fundamental identities, namely the identical
vanishing of the coefficient of each derivative of the arbitrary £+, &, and £". He was not
the first to deduce these identities. This discovery can be traced to Felix Klein [16],
and although Rosenfeld did not specifically identify Klein’s procedure, he did cite one
of his essential results, namely the appearance of the four field equations that did
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not involve accelerations when using Einstein’s 1918 Lagrangian that was quadratic
in the time derivatives of g,, [17]''. In any case, Rosenfeld was the first to project
these relations to phase space. We think it likely that it was the Klein procedure
that Rosenfeld refered to in his introduction when he noted that “in the especially
instructive example of gravitation theory, Professor Pauli helpfully indicated to me
a new method that allows one to construct a Hamiltonian procedure in a definitely
simpler and natural way when identities are present”. Pauli had exploited one of
these identities in his Encyclopedia of the Mathematical Sciences contribution on
relativity [18], and had cited Klein. One might be justified in interpreting this sentence
as a recognition by Rosenfeld that Pauli had communicated to him the fundamental
ideas of the general theory presented in this paper. We will comment on this hypothesis
in our concluding remarks!'2. Indeed, the series of volumes was Klein’s creation, and

Klein carefully read the article and offered constructive criticism!3.

4.1 Primary constraints

Substituting (15) into the identity (22) we find that the identically vanishing coeffi-
cients of £, are

oL
o) —
Copy = 07 24
00, (24)
while the coefficients of & ,, give
oL
U) =
c?) =0. 25
9 (25)
With regard to the remaining transformations, the coefficient of ', gives
oL
Car +IF =0. 26
9 (26)
oL

After introducing the momenta P< := Rosenfeld obtains the phase space con-

straints (R18c)

9Qa

P, = Fu =0, (27)
Pl = F =0, (28)

and
Pl +10 = Fl =0. (29)

This last relation corresponds to (R79)'*. Looking at the vanishing coefficient of Qq
in the identity (23) under the variations 6Qq = car&", Rosenfeld showed in (R80) that

70 is independent of Qo. Thus the three relations (27)—(29) are primary constraints,
using the terminology introduced by Anderson and Bergmann in 1949 [10].

11 See his remark preceding equation (R120).

12 Tn fact, Pauli derived the contracted Bianchi identities in the same manner that was later
employed by Bergmann for generally covariant theories [5]. He performed an integration by
parts of the identity, and then let the £" on the boundary vanish. Pauli did not offer a
genuinely Klein inspired approach until his updated annotated relativity article appeared
in 1958 [19]. He shared this derivation first in a letter dated 9 October 1957, addressed to
Charles Misner [20].

13 See the discussion of the article in [21]

14 Rosenfeld actually defines F := P*c,., in his Case 2. Thus in an effort to introduce a uni-
fied and hopefully more comprehensible notation, we are representing the actual constraint
with a ‘prime’.
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4.2 Singular Lagrangians
For the quadratic Lagrangian the momenta take the form
P = APQs + D*, (30)

where A%? and D are functions of Q. and their spatial derivatives. Then (24), (25)
and (26) deliver the additional identities,

cgu/laﬁ =D AP =0 AP =0, (31)
and
cg#Do‘ =D =0, D* =0, (32)

corresponding to (R25) and (R26). The first is the statement that the ¢,
Y. are null vectors of the Hessian matrix'® A%, As we shall see, Rosenfeld used all

of these relations in his construction of the Hamiltonian.

0
c,, and

4.3 Construction of the Hamiltonian

In solving (30) for the velocities, Rosenfeld refered to “the theory of linear equations”
but did not give an explicit reference. His procedure was unique as far as we can tell.
Here we repeat Rosenfeld’s argument in Section 3, filling in some additional details
to make the argument more comprehensible.

He first supposed that he had found, presumeably through a suitable linear com-
bination of the linear equations (30), a non-singular submatrix of the Hessian matrix
of rank N — rg, where NV is the total number of @), variables, and rg is the number
of primary constraints. Label the indices of the non-singular matrix by o’ and the

remaining indices by o/, Let A3 represent the inverse of the non-singular A7,
ie., Aa/ﬁ/.Aﬁ/'V, = 4],. Then the following c'ry(;:, where 7/ = N — rg + r, are for each

4" explicit null vectors of the matrix A%,

4 -y
= A Ao,

and
" "
C;Ya// = _52//
Explicitly,
’yll Otp, ,Y// O/p, 7// Oz”p,
cTOtA = CTO/A + CT‘O/’A == O-
Now since these null vectors must be expressible as linear combinations of the 2

0 0 s 3 0 a _ .0 a __ O0pa —
Cop and ¢y, it follows that since ¢, , P* = ¢, ,PY = ¢, P* =0,

0=A"" Ay P 60, P,
and we have therefore solved for P*" as a linear combination of the P,
7DO// - Aa//ﬁ/Aﬁ,a/PO/.

15 Cecile DeWitt-Morette indicated to one of us several years ago that she denotes this the
“Legendre matrix”, but the Hessian terminology now seems to be widespread.
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A similar relation holds for D*". It follows that a special solution Q0 of (30) is (R32),

QY = Agy(PY = DY)
% (33)
Qﬁ” =0.
The general solution is therefore
Qo= Q4 + N'egy, + Acq + ¢, (34)

where the \*, X\ and A" are arbitrary functions.

This method for solving linear singular equations is to be contrasted with a pro-
cedure pursued by Bergmann and his collaborators, beginning in 1950 [22]. His group
employed the so-called “quasi-inverses”, but again without explicit references. The
procedure was first published by Moore in 1920 [23]. It was subsequently rediscovered
and extended by Penrose in 1955 [24]. Dirac invented his own idiosyncratic method
in 1950 [7]*°.

Rosenfeld then substituted the general solutions (34) into the standard
Hamiltonian

H=QaP" - L(Q,Q). (35)
Explicitly, we have
£(Q,Q0 + N, + X, + ) = ) AN + B+ €
1 ’ ’ ’ ’
= 5 AasP? PP+ AggBY P + €

where € 1= J A% Q, .Qpp + 5C and C is given in (13). Then since
PoQa = Aarg P PP + N F + AF + X' F,,
we have finally Rosenfeld’s (R35),
H="PQo — L =Ho+NF, +\F +\'Fp, (36)

where 1
Ho = 2Aa/ﬁ/73a’735/ — AwpBY PP — €.

The Hamilton equations follow as usual from the variation of the Hamiltonian density,

6L Q. QIQ. P, | 6L [Q,QIQ. PN
0Qn — 0

OH = 6PQa + POQqo — N )
@ @ 5Qu 50,

= 6PQu — P0Qq,

where we used (R33) and the Euler-Lagrange equations. Rosenfeld did not posit a
new variational principle!”. He simply proved that the Hamiltonian equations, with
the Hamiltonian containing the arbitrary functions A", A and A", are equivalent to
the Euler-Lagrange equations.

16 Dirac’s point of departure was his assumption that the Hamiltonian pO‘Qa — L(Q,Q)
could be conceived as a function of independent variables @, @, and p.

17 See [25], for example, where in the context of non-singular systems one speaks of the
‘modified Hamilton’s principle’ 5ftt12 (piqi — L(q,p, t)) =0.
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4.4 Diffeomorphism and gauge generators

For the purpose of constructing the phase space generators of infinitesimal symmetry
transformations it is convenient to rewrite the identity (23) equivalently as

0= oL 5 Qu + oL 50., oL

_ &Y LEH 4 THET , 37
50 9Qun, aQwQ W&+ L+ TTE (37)

o

as Rosenfeld does explicitly in (R56¢) for his Case 1.

This form of the identity is actually the basis of Noether’s second theorem. She
gives the scalar density form explicitly in her equation (13) [15]. Noether had also
considered the case where the Lagrangian differed from a scalar density by a total
divergence, referring to Einstein’s quadratic Lagrangian and Klein’s second note, his
equation (30) [16]. This is the Lagrangian employed by Bergmann and his collabora-
tors. Bergmann’s student, Ralph Schiller, based his dissertation on the straightforward
extension of Rosenfeld’s technique to this case in which the divergence term is not
invariant under coordinate transformations [26]%.

As written our relation also incorporates Rosenfeld’s Case 2. Indeed Case 2 deals
with what is often called quasi-invariance, namely invariance of a Lagrangian up to
a total derivative. The inclusion of additional total derivative terms in Noether’s
theorems is traditionally attributed to Klein’s assistant, Bessel-Hagen [27]. In Bessel-
Hagen’s own words “First I give the two E. Noether theorems, actually in a somewhat
more general form than they appear in the cited article. I owe this [new form] to a
verbal communication from Fraulein Emmy Noether herself’'?. One might conclude
that Noether was essentially involved in his work [28].

On-shell, that is on the solutions of the Euler-Lagrange equation 555 =

6& 685’“ = 0, the identity (37) implies that the current

oL
0Qa

oL oL

M= 0Qq —
900, 0.,

Qa & + L +T7E

is conserved, from which by applying the Gauf} integral theorem one obtains a con-
served charge

- 3 0 _ 3 oL o oL v 0 0¢r
MIg] .—/dx/\/l —/dx(aQa,OéQa aQa,OQa,Vf + L+ TE)

N / &’ (P*6Qa — HE® = P*Quul" + 17¢")
- / & (PO6Qu — Gt + T06") (38)

where we introduced the momenta, the Hamiltonian density (36) and the energy-
momentum density G, = P*Qa, — 5L, Rosenfeld’s (R41).

18 «“With this information it is possible to show that the C' of (6.8) is actually the generator
of the 6y4 and the d74 transformations. The calculation is straightforward and closely follows
a similar calculation in Rosenfeld,'® so that we shall not carry it out”. The reference is to
the paper we are analyzing here.

19 «Zuerst gebe ich die beiden Noetherschen Sétze an, und zwar in einer etwas allgemeineren
Fassung als sie in der zitierten Note stehen. Ich verdanke diese einer miindlichen Mitteilung
von Fraulein Emmy Noether selbst.”
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Rosenfeld gives no reference for these constructions, but it is most likely that he
learned of these objects from Pauli [18], who in turn refers to Klein [16]. The pseudo-
tensor was in fact first written down by Einstein [17], and that publication stimulated
the symmetry analysis of E. Noether [15] and Klein.

Rosenfeld was the first to promote the vanishing charge (38) to a phase space
symmetry generator, and also the first to show that it is a linear combination of phase
space constraints. Up to the time that Rosenfeld accomplished this feat, attention had
been paid only to the nonvanishing conserved Noether charges that follow from global
symmetries. Strangely, although it is manifestly evident in Rosenfeld’s analysis, he
never stated explicitly that this charge was constrained to vanish.

4.5 Infinitesimal variations generated by the Rosenfeld-Noether generator

In a tour de force Rosenfeld proved that the charges (38) generated the correct 6*Q,
and 0*p® variations of all of the canonical variables under all of the infinitesimal
symmetry transformations.This is obvious for the configuration variables @, since

{Qa, / d%MO} - {Qa, / B (15Qs — HE — gaﬁ‘l)}

= (;Qoz - Qa,ugu = 6*Qo¢' (39)

It is less obvious for variations of the momenta, but Rosenfeld gives an explicit proof.
Bergmann and his collaborators, who did over twenty years later consider the real-
ization of general coordinate transformations as canonical transformations, did not
provide an analogous proof.

Rosenfeld showed in the equation preceding (R51) that for the generalized mo-

av . 0L
menta P := 00 10

DL 5,08Qp,) 0L 4 00Q4

v — — — _ ap v
P = 000 T 0Quy T 0Quw T 0Qa T S 10)
Then he used the identity (22) to conclude that
oL 0 20Q
av _ ¢ _ e _ DB Bsv v sa
oP g,;t aQa,u 8@04,1/ (Irg ),;L P ( aQa (Su ,[L(Sﬁ) . (41)
Therefore
oL 0 06Q)
o ep _ T _ DBl B0 0 sa
oP e aQa 5Qa (Irg ),u P ( 0Qq 5# ,u(sﬁ)
o0z? 06Q)
_ _¢apa T oer _ DB B aa 0
T 00, T aq, TP ()
and thus
019 06Q
kDO _ _¢apa _ r er _ D B aa¢0 _ poep
0P §aP aQaf P 90, + PE, —PLEN. (43)

This is indeed the variation generated by [ A3z MO,
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4.6 Generation of secondary constraints

Although Rosenfeld entitles his paragraph Section 7 as “The infinitesimal transfor-
mations M as integrals of the motion”, we find in this section the derivation of what
is called today secondary, tertiary ... constraints. This remarkable procedure derives
constraints without making explicit use of the Hamiltonian!

Let us rewrite the charge density in (38) using the transformations (15) and taking
into account the primary constraints (27), (28) and (29). Identifying the coefficients
of time derivatives of the descriptors as in (R59), we have

MO = NIEH + NI+ NTE+ NJEH + NOE+ NPET
= Ful! + FE+ F1& + P 1 + P o — HE® — Gol” (44)

It is obvious from the conservation of Noether charge that follows from (23) that the
coefficients of each of the time derivatives of the arbitrary descriptors that appear in
the charge density must vanish. Also, as Rosenfeld noted, the coefficients of the highest
time derivative of the descriptor £ are constraints, now called primary constraints.
But then he noted that setting equal to zero the time derivative of the charge density
yielded a recursion relation among the vanishing coefficients. In particular, employing
an integration by parts we obtain his relations (R63)

Ny =Fo=Ng = (Pchg) , +H =0, (45)
Ny =Fp =Ny = (Pcly) .+ Gp = 0, (46)
N'=F=N=(P*), =0, (47)

In other words, he derived secondary constraints and in principle by (R63) tertiary
and so on.

Already in 1930 Rosenfeld laid out a valid procedure for constructing the infinites-
imal phase space generators of field variations produced by arbitrary infinitesimal
coordinate transformations and also internal gauge transformations. The procedure
is fully equivalent to the method employed by Bergmann and his collaborators in
1951. One remarkable and generally unrecognized feature of Rosenfeld’s work is that
he showed that preservation of primary constraints could lead to further constraints
that he could construct explicitly. Algorithms for determining secondary and higher
constraints have until now been attributed to Bergmann and collaborators, and also
to Dirac. Regarding the diffeomorphism symmetry, Dirac never concerned himself,
as did Rosenfeld and Bergmann, with the realization of this group as a phase space
transformation group.

In fact, it turns out that neither Rosenfeld, nor initially Bergmann, were able to
implement finite diffeomorphism transformations. Rosenfeld implicitly acknowledged
this failure (see his Sect. 6) while Bergmann did observe that it was a crucial invention
of Dirac that rendered possible the realization of a diffeomorphism-induced group.

The problem with the Rosenfeld and the Bergmann-Anderson generators [10] are
two-fold. Under finite transformations the arbitrary functions A" that appear in the
Hamiltonian appear with time derivatives of infinite order - as do the coordinate
transformation functions. The same is true for the generators that were rediscovered
in 1982 by Castellani [29]. We will address this point in Section 4.4.

5 Rosenfeld’s application

We will now apply Rosenfeld’s program to his Einstein-Maxwell-Dirac model, obtain-
ing explicit expressions for the symmetry generators that appear in his 1930 article.
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In the final subsection we will apply Rosenfeld’s general formalism to construct the
Hamiltonian for the model. He did not display this expression, and if he did not
actually derive it there is good reason to believe that he could have if he had so
wished.

5.1 The Einstein-Maxwell-Dirac theory
The gravitational action

We will translate Rosenfeld’s notation into conventional contemporary form. He used
Fock’s conventions regarding the tetrads [30] and he employed a Minkowski metric
with signature —2. We will denote Minkowski indices with capitalized latin letters
from the middle of the alphabet, so the components of the Minkowski metric are

10 0 0
0-10 0
=100 -1 0
00 0 -1

Then his h;, is the covariant tetrad with the Minkowski index lowered: h; ,=ey,,
where i becomes a Minkowski index ranging from 0 to 3. (We use the symbol = to rep-
resent a correspondence between Rosenfeld’s terminology and our own). His ey, raises
Minkowski indices. Also, to avoid confusion when considering specific components,
we use a capital letter to represent contravariant coordinate objects. So ekhk7uﬁef ,
and EY g=ephy,, is the reciprical of khy, , and h"kekhk,uﬁéz is the statement that

v K _ sv
Efe, =96 i .
The spin connections are defined as

w#],] = E?V#BJQ, (48)

where
VMeJa = 8N6Ja - Fguew.
Expanding the Christoffel symbols in terms of the tetrads we find
w7 = Eo‘le[{l,#] — E‘“e[[a’u] + E"IEﬁJeNLe[La’ﬁ]. (49)

The curvature in terms of the spin connection is?°

Apl) _ 1J 1J I . LJ I LJ
R, = (@Lw,j — 0w, +wy' Lw, T —wy LWy ) (50)

Then the scalar curvature density is
R = (~9)='R = 2(~9)* B{ Ejduw,” + (—9)2 Ef B (wu' 1™ — w,! 1w, M) (51)
Rosenfeld took the gravitational Lagrangian density to be

1 1,
Ly = 21%9 = 2ﬁ(—g)2E}LEJ (w#ILwl,LJ — wl,IquLJ) , (52)

20 Rosenfeld never explicitly referred to the spin coefficients.
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where k := 87G/c?. This is his expression (R104). Thus Rosenfeld’s gravitational
Lagrangian is manifestly a scalar density under arbitrary coordinate transformations.
It is also expressible as the sum of two manifest scalar densities,

1 1 N pepw,o1g] L Ulput ((Zg)s By
L, = 2H4R+,,vv“[( 9):EVEYwl’ | = 2H47€+K[E (( 9) E[),V ’ﬂ. (53)

This is the content of (R105). This quadratic Lagrangian is the analogue in terms of
tetrads of the I'[" Lagrangian employed originally by Einstein [17] — with the signifi-
cant difference that Einstein’s I'I" Lagrangian is not a scalar density. This introduced
an extra complication in the Hamiltonian analysis of Bergmann and collaborators in
the 1950’s that was not present in Rosenfeld’s model. On the other hand, Rosenfeld’s
Lagrangian is not invariant under local Lorentz transformations. Rosenfeld addressed
this issue in his Case 2.

The electromagnetic action

We have the conventional electromagnetic action £ in terms of the vector potential
A, and field tensor F,, = A, , — Ay,

1 v
£ = —4(—9)1/2FWF“ : (54)
The matter action
Rosenfeld’s matter Lagrangian is
12|l (= 1. /< B _

W= (=)' | ity (Tt )= it (9, — Q) v —miwo |, (55)
where v := E¥T"! and we denote the constant Dirac gamma matrices as I'7. Also
=TI and

1
“QN = 4FIFJCUN]J, (56)

is the spinor connection consistent with the Christoffel connection. It was first con-
structed independently by Weyl [31] and Fock [30]. Both authors were attempting a
geometric unification of Dirac’s electron theory with gravity?'.

We will use the properties

I'yI'y = —InI'y + 2nunw, (57)
I, =11y, r°, (58)
and
(v ) =0Ty Ty I, (59)
and hence
rooir =—0,. (60)

21 See the article by Scholz [32] for a discussion of the historical importance of this work
both in the unification program and in the development of gauge theories in general. For the
relevance to gauge theory see also the article by Straumann [33].
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5.2 The momentae and the identities
Case 1 — General covariance
Rosenfeld’s Case 1 assumes that the Lagrangian transforms as a scalar density under

arbitrary coordinate transformations. This property is satisfied separately by L, £,
and W under the transformations

't =t + M (x). (61)

In particular, with L=L; +E+W =: Ly + L1,

oL + Eff; =0, (62)
under the variations

6eul = _euléf:“ (63)
and

0A, = —A,,éf;. (64)

The identically vanishing coefficient of £ in the identity (62) then yields the four
primary constraints
Fl=p" =0, (65)

where

oL
pul .
P e (66)

are the momenta conjugate to e, ;. Our (65) corresponds to (R117).

Case 1 — U(1) Gauge invariance

Rosenfeld’s Case 1 also includes covariance under U (1) transformations, dz# = 0,
0A, =&, (67)

and

e
oy =i, €y, (68)

under which 6£ = 0. The coefficient of £ in the identity (62) then yields the additional
primary constraint

F=p":= a.ﬁ =0, (69)
0Ay

which is (R108). In the second line of (R109) Rosenfeld in principle displays two
additional primary constraints, namely

121~

py = (—9) 2i¢7°, (70)

and .
pi=—(=9)""* in", (71)

which he, however, did not include among his “eigentliche Identitaten” (proper iden-
tities). We will return to this neglect at the end of this section.
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Case 2 — Local Lorentz invariance

In Rosenfeld’s Case 2 the symmetry variation of the Lagrangian picks up a total
derivative, as is the case for local Lorentz transformations in Rosenfeld’s Lagrangian.
The matter and electromagnetic Lagrangians are invariant. But under the transfor-
mations with descriptors ¢/ = —¢7/1,

Seunt = 1€ e, (72)
and 1
o = 4€UFIFJ¢7 (73)
we find that )
_ W\ 1J
se=- L |(BrEs-0)t) ¢ } (74)

Referring to (22) we read off from this expression that

1 L
Mg = . (EﬁE,J](—Q)Q) ) (75)

SV

and according to (29) the corresponding primary constraints are
1 1- 1 "
‘7:[/IJ] = pr]BJ]p, +p¢4F[1FJ]1/) + 41/)F[IFJ]p¢7 + . (((—9)1/2EF1 J]) a) =0. (76)

This is not exactly (R124) because Rosenfeld took the constraints (70) and (71) as
identities. If these are inserted into (76) we obtain (R124).

As we pointed out earlier, unless Rosenfeld indicates otherwise, he conceived all
of his variables as quantum mechanical operators. And although he does not say so
explicitly, we are to understand that the spinorial variables are to satisfy the anti-
commutation relation

[0 0], o= B + by = 00 (, ), (77)

as in (57a) in the foundational quantum field article by Heisenberg and Pauli [34] that
served as Rosenfeld’s inspiration for this paper. This interpretation is consistent with
Rosenfeld’s footnote following his equation (R107) in which he mentions that it is not
necessary in this article to discuss the modifications in the general scheme that the use
of spinorial variables entails. We make this point since from the point of view of later
developments in constrained Hamiltonian dynamics, the constraints (70) and (71) are
“second class”; they do not have vanishing Poisson brackets with all of the constraints.
Following the procedure later introduced independently by Bergmann and by Dirac,
new Poisson brackets need to be constructed that respect the constraints. However,
it turns out that in this case the new Poisson brackets correspond precisely to the
quantum anti-commutation relations employed by Heisenberg and Pauli — and it is
legitimate to use these relations in computing the action of all of the operators that
are exhibited by Rosenfeld in this paper.

5.3 Symmetry generators

Next we construct the symmetry variations according to paragraphs §13 and §14.
Substituting the variations (63), (64), (67), (68),(72), and (73) into the Rosenfeld-
Noether generator density in (38) we obtain according to (R59)

MO = —Flegr® — Flea & — FAL" — p™enr€ — p A€y — HAGE — G.&°
: . € . e
= FEAP Eatiy ppt— iy pulEt gt (78)
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We are assured, following the proof in Section 3, that the charge M[¢] := [ d®zM°
generates the correct symmetry variations of all of the phase space variables.

Also, according to the arguments in Section 3, we obtain the following secondary
constraints,

N = (pafeoj)ya +(p*Ao) , —H =0, (79)
NP = (palebf))a -Gy, =0, (80)
and o o
0 .__ a . . _
NY = _p’a+lhcpww_zhcpwa =0. (81)

The secondary constraints (79) and (80) appear in Rosenfeld’s article for the first
time as the phase space expression of the four Einstein equations that do not involve
accelerations. Following their appearance in (R119) he noted that Klein had obtained
them in another context in 1918 [16]. In fact, Klein obtained them in the context of
the I'I" gravitational Lagrangian. This lends support to our claim that had he wished,
Rosenfeld could easily have extended his method to the another case that was pursued
by Schiller in his Ph.D. thesis.
Let us write the Rosenfeld-Noether generator M[{] as the sum

M(g", €, ¢"] = DIe"| + Ulg] + L™,

thereby distinguishing the generators for general coordinate transformations, U(1)
gauge transformations and local Lorentz transformations. We obtain, by introducing
the secondary constraints (79), (80)

D[¢H] = / d*r (—]—"Ieméo—]:Iea[éa—]:Aoéo—pale,,Igf;—p“A,,{f:l—HAogo—gaf“)
= /d% (—ffewg'o — Fleqaré® — FAE® + NJe° + Ngga) +b.t.
= / dr ((—ffem — FA)E® — Flearé® + NO€° +N£§“) + b.t., (82)

where b.t. denotes a boundary term.
Next, the generator for infinitesimal U (1) transformations is

Ul = [t (~F€+p6atiy ot —i ¢ purs)
_ / d (~FE+ N€) + bt (83)

It may be rewritten further by using the relations (70) and (71) and then employing
(as did Rosenfeld) the algebra (77),

e

0_ _,a o\ 2t =
N = —pt+ . (=) ulo =0, (34)

Thus we have here the first published derivation of Gauss’ law in a constrained
Hamiltonian formalism.
Finally, the generator of infinitesimal local Lorentz transformations is

L) = [ dary et (55)
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One knows that for a variety of examples (see e.g. [35]), that for local symmetries
characterized by descriptors €4, the gauge generator has the form

Gl = / P (6aE™ + M)

where the {¢a,14} are all first-class constraints. The expressions (82), (83), (85)
have this generic structure, although the first class property need not hold for the
coefficients of the ¢4 and éA in the Rosenfeld-Noether generators above. Indeed, we
expect that one needs to work with modified transformations in order to respect the
Legendre projectability of the transformations [36]. These questions will be addressed
in a future publication.

5.4 Finite canonical transformations and the symmetry group algebra

A subset of Rosenfeld’s infinitesimal symmetry transformations can be readily ex-
tended to finite transformations. So, for example, a finite Lorentz rotation with finite
descriptor &7 is generated by the exponentiated generator M, defined as a sum of
nested Poisson brackets,

eXp(ML)::1—|—{...,ML}—|—;{{...,ML},ML}—F... (86)

One can also realize canonical active finite 3-D diffeomorphism transformations. Sup-
pose, for example, that we wish to actively transform a scalar phase space function
¢(z) under the diffeomorphism z'* = x*+£%(x). Its finite actively transformed change
is then

=6 bl ) (58", €+ (87)

This is indeed generated by N [£] := [ d®xNJ¢?,

§=ep(NIE) 6 =0+ (o NIE} + ) ({(&NEL NN+ (89)

However, we cannot realize arbitrary 4-D diffeomorphisms, 2/# = a# + £#(x) with
20 # 0, in this way. Rosenfeld eliminated precisely these transformations in his deriva-
tion of the group algebra in his equation (R53)%2. The reason is that time derivatives
up to infinite order of the descriptors £* appear in the actively transformed phase
space functions, and they do not appear in M [¢]. One encounters a related difficulty
in considering the commutator of infinitesmal transformations. If we undertake the
infinitesimal transformation z} = z* + ¢|'(x) followed by x4 = z* + &§(z) and then
subtract the them in reverse order, the descriptor of the overall coordinate transfor-
mation is

53 = fﬁugg - fg,ufi/ (89)

Thus higher order time derivatives appear with each commutation. The appearance
of these time derivatives was an early concern of Bergmann — although not explic-
itly stated by him or his collaborators in the period prior to Dirac’s gravitational

22 The closure of this phase space algebra will later be the defining property of first class
constraints [7]. Curiously, Dirac introduced this notion without ever mentioning the work of
Rosenfeld with which he had been familiar since 1932. See [4] for a discussion of relevant
correspondence in 1932 between Rosenfeld and Dirac.



44 The European Physical Journal H

Hamiltonian breakthrough in 1958 [37]. He did however refer to this challenge in a
later recollection®?

We can surmise from Rosenfeld’s discussion in his Section 6 that he must have
recognized this obstacle since as we noted above he confined his discussion of the group
algebra to the spatial diffeomorphisms and the internal symmetry transformations.
He concluded that the vanishing generators must satisfy a closed Lie algebra. In the
language that was introduced later by Dirac [7] (without ever mentioning the work
of Rosenfeld with which he had been familiar since 1932)*, the constraints must be
first class.

The impossibility of generating finite canonical transformations corresponding to
coordinate transformations for which 6x° # 0 was a feature not only of Rosenfeld’s
Noether charge, but also the generators that were written down first by Anderson and
Bergmann [10] in 1951, and later by Bergmann and Schiller [12] in 1953. Although
Dirac never concerned himself with the question whether the full diffeomorphism
group could be realized as a canonical transformation group, he is the one who un-
intentionally invented the framework in which this goal could be achieved. The key
was the decomposition of infinitesimal coordinate transformations which were either
tangent to a given foliation of spacetime into fixed time slices, or perpendicular to
the foliation. Bergmann and Komar [38] subsequently gave a group-theoretical in-
terpretation of this decomposition, pointing out that the relevant group was a phase
space transformation group that possessed a compulsory dependence on the spacetime
metric. In 1983 we [39] provided an explicit proof that this dependence was required
in order to obtain a Lie algebra that did not involve higher time derivatives of the
descriptors. More recently, Pons, Salisbury and Shepley [40] showed that this demand
on the structure of the group algebra is equivalent to the demand that the permis-
sible variations of configuration-velocity variables be projectable under the Legendre
transformation from configuration-velocity space to phase space.

5.5 Expanding upon Rosenfeld’s application: construction of the Hamiltonian

Because of the existence of primary constraints it is not possible to solve uniquely for
the momentae in terms of the velocities. As we noted earlier, Rosenfeld pioneered a
method for obtaining general solutions that involved as many arbitrary functions as
there were primary constraints, where the constraints arising in both Cases 1 and 2
must be taken into account. Rosenfeld then employed these general solutions in the
construction of the Hamiltonian.

Rosenfeld did not display the explicit expression for the Hamiltonian for his general
relativistic model. We do not know why. It is, however, straightforward to apply his
method to construct it. We undertake the construction here.

2 “During the early Fifties those of us interested in a Hamiltonian formulation of general
relativity were frustrated by a recognition that no possible canonical transformations of the
field variables could mirror four-dimensional coordinate transformations and their commu-
tators, not even at the infinitesimal level. That is because (infinitesimal or finite) canonical
transformations deal with the dynamical variables on a three-dimensional hypersurface, a
Cauchy surface, and the commutator of two such infinitesimal transformations must be an
infinitesimal transformation of the same kind. However, the commutator of two infinitesimal
diffeomorphisms involves not only the data on a three-dimensional hypersurface but their
“time”-derivatives as well. And if these data be added to those drawn on initially, then, in
order to obtain first-order “time” derivatives of the commutator, one requires second-order
“time” derivatives of the two commutating diffeomorphisms, and so forth. The Lie algebra
simply will not close” [41], pp. 174-175.

24 See [4] for a discussion of relevant correspondence in 1932 between Rosenfeld and Dirac.
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We begin with the momentum conjugate to the tetrads e, s, (R118),

0L, | OL,
P = 0e,r T 0é,r
1

= (-9)'7 (—29‘”0E“”EM +g MERET ¢ g “‘gow%) (6ars — €5ia)

1 , .
+ i (=) (" Ty + DDy (20 BRI0) + BHE B0 ) [ . (90)

In seeking appropriate linear combinations of the velocities that can be solved in
terms of the momentae, it seems natural to define the symmetric and antisymmetric

combinations
1

S(u) 1= €{ulu)r = € éy) = N (91)
and
a[l“,] = 6[“ . él,]. (92)

It does turn out that the af,,; combinations do not appear in (90), and neither do
the s(g,). Defining S(eh) .= El(ap?) and Al*f] .= El[ap?] we obtain the relations

§(u0) — N(“O), (93)

and
Alr) = Nl (94)

plus the six linear equations for the s(4),

B P = MEDedg g ), (95)
where
NI = ;(—9)1/2 (g“["g”]bE?u +g'ltg" 0B, — g"‘[“g”]OEﬁ’u) enly
+ 4i0 ()2 (LT + i Tyy?) B B 60, (96)
N#0) — ;(—9)1/2 (—gcog“OE}i} i ga(uE?V)Igoc) eiw’c
+ (gc(“go)OEﬁZ — gO‘OE](v‘ng)C) e,
+ (gaog“oE& - g“(“go)oEfu) ehne
+ 410 (~9)2 (T T + TiwTy?) BXC5) B, (97)
N — +ii1/7 (—=9)"* (T Ty + T Lyy?) EX @Y B0, (98)
and
J(ab)(ed) _ ;\/391\7—1 (—2ewbet 4 cdaceh 4 caced?) (99)

The relation (94) contracted with e,re, s is the primary constraint (76). Also the
contraction of (93) with e, s is the primary constraint (69).
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We now solve (95) for the s(.q), obtaining what Rosenfeld calls the special solu-
tions. Employing Rosenfeld’s notation, we label the special solutions with a super-
script 0. Then using the inverse of M (@)(¢4) we find

S?Cd) = M(cd)(ab) (E(a ,pb) _ N(ab))
N
= 2,/5 (—9abged + GacGbd + Gadgoe) (E(“ P — N(“b)) (100)
g

Following Rosenfeld (see (R32) and (33)), we also know that we can take

ah =0, (101)
and
S0y = 0- (102)

Again following Rosenfeld the general solutions for the velocities are therefore

e = EY (s?w) + a?yu]—k) = 00 B sQu) + B (A0 + Apui) 5 (103)
where )\, and A, are arbitrary spacetime functions. As Rosenfeld noted, these
arbitrary functions do not appear when these velocities are substituted into the

Lagrangian. On the other hand, defining the arbitrary functions A; := E7A, and
)‘[IJ] = E?Ej/\[wj] we find that

P EY (Ah + Njuy) = M F + AP F, (104)

Thus substituting the general solution (103) into p*/é,; — £ we obtain the purely
gravitational contribution to the Hamiltonian density

My =He+ M F + AF (105)
with
c 1 ab cd ab cd 1 ab cd
Hy = o S Maby(ea) S = N Mapy ey S + ) N Mapy(cay N0 — A
where

A= 82 (—g)'/? (4E][§}ga”bEfv] — 2B gelle Y T]Mng[aga]b) M el
is the velocity-independent term in L.

The total Hamiltonian density is Hg + Hem, where the electromagnetic contribu-
tion Hep, can also be found applying Rosenfeld’s method. See [4]. It has the structure
Hem = HE,, + AF + Ax; where the x; are the spinorial constraints from (70), (71).
In the “usual” Dirac-Bergmann procedure one would require the stabilization of pri-
mary constraints, and/or find new constraints or fix the multipliers A. Although the
Hamiltonian (105) generates the correct field equations, some additional work needs
to be done to be able to compare with later publications on canonical tetrad-spinor
formulations, as for instance [42,43]. The task would be to check that H{ + Hg,, is
a linear combination of secondary constraints such the total Hamiltonian vanishes
weakly (up to a total divergence) — as expected for generally covariant theories.
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6 Conclusions

Léon Rosenfeld’s 1930 Annalen der Physik paper not only developed a comprehensive
Hamiltonian theory to deal with local symmetries that arise in Lagrangian field the-
ory, but he already disclosed connections between symmetries, constraints, and phase
space symmetry generators. Indeed, to a surprising degree he established the foun-
dational principles that would later be rediscovered and in some respects extended
by the individuals who until recently have been recognized as the inventors of the
methods of constrained Hamiltonian dynamics, Peter Bergmann and Paul Dirac. Not
only did he provide the tools to deal with the only local gauge symmetries that were
known at the time, namely local U (1) and local Lorentz covariance, but perhaps more
importantly he also established the technique for translating into a Hamiltonian de-
scription the general covariance under arbitrary spacetime coordinate transformations
of Einstein’s general theory of relativity. Some of this pioneering work either became
known or was independently rediscovered over two decades later. But for unknown
reasons Rosenfeld never claimed ownership, nor did he join later efforts to exploit his
techniques in pursuing canonical approaches to quantum gravity.

It is remarkable that Rosenfeld’s article remained unknown to the community.
Even the most cited monographs on constrained dynamics [44-46] omit Rosenfeld’s
article?®. Why did this happen? It seems likely that Pauli’s lack of appreciation and /or
understanding could have influenced Rosenfeld’s decision not to promote his work.
We get a sense of Pauli’s attitude from a letter written by Pauli to Oskar Klein in
1955: “I would like to bring to your attention the work by Rosenfeld in 1930. He was
known here at the time as the man who quantised the Vierbein (sounds like the title of
a Grimms fairy tale doesn’t it?). See part II of his work where the Vierbein appears.
Much importance was given at that time to the identities among the p’s and ¢’s
(that is the canonically conjugate fields) that arise from the existence of the group of
general coordinate transformations. I still remember that I was not happy with every
aspect of his work since he had to introduce certain additional assumptions that no
one was satisfied with?® Indeed, as we have shown, it only became apparent in his
Part 2 that the special cases that Rosenfeld identified in his Part 1 were chosen with
the Einstein-Maxwell-Dirac theory in mind, and the article might have been more
accessible had he simply addressed this model from the start rather than formally
treating a wider class of theories. It is this lament by Pauli that leads us to suspect
that Rosenfeld’s general theory was indeed more general than the unidentified Pauli
suggestion that Rosenfeld acknowledged in his introduction.

Yet the paper was known, in particular already in 1932 by Dirac, as has been docu-
mented elsewhere [4], yet Dirac did not cite it in his papers on constrained Hamiltonian
dynamics [7,8]. Strangely, in another paper of 1951 concerned with electromagnetism
in flat spacetime Dirac did refer to Rosenfeld in addition to his foundational papers in
declaring that “an old method of Rosenfeld (1930) is adequate in this case” in making

%5 The present article may thus be seen as an atonement to Rosenfeld by one of the authors.
26 Gerne mochte ich Dich in dieser Verbindung auf die lange Arbeit von Rosenfeld, Annalen
der Physik (4), 5, 113, 1930 aufmerksam machen. Er hat sie seinerzeit bei mir in Ziirich
gemacht und hiess hier dementsprechend der Mann, der das Vierbein quantelt (klingt wie der
Titel eines Grimmschen Mérchens, nicht?). Siehe dazu Teil 1T seiner Arbeit, wo das Vierbein
daran kommt. Auf die Identitdten zwischen den p und q— d.h. kanonisch konjugierten Feldern
die eben aus der Existenz der Gruppe der Allgemeinen Relativitatstheorie (Koordinaten
Transformationen mit 4 willkiirlichen Funktionen) entspringen, wurde damals besonderer
Wert gelegt. Ich erinnere mich noch, dass Rosenfelds Arbeit nicht in jeder Hinsicht be-
friedigend war, da er gewisse zusétzliche Bedingungen einfithren musste, die niemand richtig
verstehen konnte [20], p. 64.
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the transition from a Lagrangian to the Hamiltonian?”. With regard to the Syracuse
group, the paper was only discovered following the publications by Bergmann [5] and
Bergmann-Brunings [6] of their initial foundational papers on constrained Hamilto-
nian dynamics®®. As we noted earlier, following this discovery Schiller made explicit
use of the Rosenfeld paper in constructing the phase space generators of symmetry
transformations that we have elected to call Rosenfeld-Noether generators. On the
other hand, in the joint publication by Bergmann and Schiller [12] that focused on
these charges Rosenfeld was not cited.

Rosenfeld’s article begins with general discussion regarding the consequences of
local symmetries existing in the in the cotangent bundle space of symmetries in
configuration-velocity space. He not only (1) derives identities following from the
invariance of a Lagrangian and uses them for obtaining phase-space constraints, but
he also (2) proposes an expression for the generator of phase-space symmetry transfor-
mations, and (3) details a procedure to derive a Hamiltonian density from a singular
Lagrangian in a manner more mathematically satisfying than later ones by Dirac and
by Bergmann and his Syracuse group.

The history-of-science story of the Klein-Noether identities is another story of early
discovery and later rediscovery. Felix Klein in 1918 derived a chain of identities for
general relativity in his attempt to arrive at conservation laws in general relativity [16].
Similar chains of identities exist for arbitrary local symmetries; they shall not be
derived here (for details see Sect. 3.3.3 in [35]) These identities have as a consequence
what is known as Noether identities, namely identically fulfilled relations involving
the Euler derivatives and derivatives thereof. Another consequence is the vanishing
of the Hessian determinant, which is a characteristic of a singular Lagrangian with
ensuing phase-space constraints.

The full set of Klein-Noether identities was investigated also by Goldberg [48],
exhibited by Utiyama [49], mentioned by Trautman [50] — all of them not citing F.
Klein. (It seems that the first reference to Klein is in [51].) The identities were called
extended Noether identities in [52,53], cascade equations in [54,55], Noether’s third
theorem in [56,57], and Klein identities in [58].

Another result concerning the Klein-Noether identities — already visible in the
Rosenfeld article, and still widely unknown today — is the fact that these are entirely
equivalent to the chain of primary, secondary, ... constraints in the Hamiltonian
treatment [52,53].

And still another history-of-science story lays dormant under repeated efforts to
find generators of phase-space symmetry transformations. After Rosenfeld, the inves-
tigations into the manner in which the constraints of a theory with local symmetries
relate to the generators of these symmetries in phase space restarted with the work
of Anderson and Bergmann [10], Dirac [59], and Mukunda [60,61]. It soon became
clear that the phase space symmetry generator is a specific linear combination of the
first-class constraints. In 1982, Castellani devised an algorithm to determine a sym-
metry generator [29]. This was completed by Pons/Salisbury/Shepley [40] by taking
Legendre projectability into account and thereby extending the formalism to incor-
porate finite symmetry transformations.

It seems to have gone unnoticed that Rosenfeld already in 1930 showed that the
vanishing charge associated with the conserved Noether symmetry current is the
sought-after phase-space symmetry generator, called the Rosenfeld-Noether generator
in this article. The figure who came the closest to affirming this fact was Lusanna

27 147], p. 293.

28 J. Anderson related to D.S. in 2006 that it was he who had found the paper and brought
it to the attention of Bergmann. In this same conversation R. Schiller indicated that the
paper was the inspiration for his Ph.D. thesis, conducted under Bergmann’s direction.
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who indeed contemplated a wider scope of symmetry transformations including sev-
eral specific pathological cases [52,53]. The proof by Rosenfeld, repeated in Section 4,
is not easy to digest at first reading, but it is valid for infinitesimal transformation.
One consequence that all examples suggest is that one can read off the first-class
constraints of the theory in question from the Rosenfeld-Noether generator. Recall
that in the “usual” handling of constrained systems, sometimes referred to as the
Dirac-Bergmann algorithm, one needs to establish a Hamiltonian first in order to find
all constraints beyond the primary constraints. Only then can first and second-class
objects can be defined.

In a forthcoming article we will show how Rosenfeld’s approach can be generalized
so that Legendre projectability is respected. One significant result of this analysis is
that whenever local symmetries beyond general covariance are present, such appro-
priately chosen symmetries must be added to the general coordinate transformations

to achieve canonically realizable transformations2®.

With his attempt to quantize the Einstein-Maxwell-Dirac theory Rosenfeld made
an ambitious effort that was “well before its time”. Keep in mind that prior to
Rosenfeld’s article no results on the Hamiltonian formulation of pure Einstein gravity
were known, that Weyl’s ideas of electromagnetic gauge invariance were not generally
accepted, and that spinorial entities were still treated ad hoc. He can be forgiven for
not having reached today’s level of understanding. He did not derive explicitly all of
the first-class constraints from the Klein-Noether identities although he did appreciate
their importance as group generators. Nor did he display the full Hamiltonian for his
model even though as we have seen he was certainly in position to do so in a straight-
forward application of his method. Thus he could have derived a tetrad formulation
for general relativity with gauge fields nearly five decades before it appeared on the
quantum gravitational research agenda.

As a matter of fact the canonical formulation of general relativity in terms of
tetrads and spin connections became a hot topic only in the 1970’s - even though Bryce
DeWitt and Cecile DeWitt-Morette had addressed this issue already in 1952 [63]. The
preponderance of articles on canonical general relativity around 1950 were formulated
in terms of the metric and the Levi-Civita connection. Rosenfeld obviously was aware
that this was possible in the case of vacuum general relativity. In item (3) of his
Section 15 he writes “The pure (vacuum) gravitational field could be described by the
guv instead of the h; ,,. Then we would be dealing with another variation of the ‘second
case’ ”. Indeed, he notes that as a consequence of the general covariance four primary
constraints would arise (that first appeared explicitly in Bergmann and Anderson).
It would be of interest to apply a modified version of Rosenfeld’s program to both
the Dirac [37] and to the ADM [13] Lagrangians. These differ by divergence terms*C.
The divergence terms do not however transform as scalar densities under general
coordinate transformations, so their treatment would require a simple modification of
Rosenfeld’s Case two.

Of course, Ashtekar’s invention of new gravitational variables initiated an interest
in tetrad variables that form the basis of today’s active research in loop quantum
gravity. And we can thank Rosenfeld for not only setting down the first stones of
the foundations for this canonical loop approach to quantum gravity. Remarkably, in
addition he pioneered the development of the gauge theoretical phase space framework
that undergirds all current efforts at unifying the fundamental physical interactions.

29 See e.g. [36] and [62] for a discussion of these additions in the context of Einstein-Yang-
Mills and the Ashtekar formulation of general relativity.
30 See e.g. [64]
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Appendix A: Constrained dynamics
A.1 Singular Lagrangians

Assume a classical theory with a finite number of degrees of freedom ¢* (k =1,..., N)
defined by its Lagrange function L(q, ¢) with the equations of motion

OL d OL oL 0?L . %L .
- = - ¢ ) - G = Vi, —Wi;4j =0. (A1
ogk  dt Ogk <8qk Ok o q ) AGrdGI q k kj4J ( )

For simplicity, it is assumed that the Lagrange function does not depend on time
explicitly; all the following results can readily be extended. A crucial role is played
by the matrix (sometimes called the “Hessian”)

0%L
Wy = dgkdG

If detW = 0, not only the Lagrangian but the system itself is termed “singular”,
and 'regular’ otherwise.
From the definition of momenta by

L]y =

(A.2)

. oL
pk(q7Q) - aqu (A3)

one immediately observes that only in the regular case can the pg(g,¢) be solved for
all the velocities in the form ¢7(g, p) — at least locally.

In the singular case, det W = 0 implies that the N x N matrix W has a rank R
smaller than N — or that there are P = N — R null eigenvectors §’;:

& Wi =0 for p=1,...,P(=N —R). (A.4)

This rank is independent of which generalized coordinates are chosen for the Lagrange
function. The null eigenvectors serve to identify those of the equations of motion which
are not of second order. By contracting these with ¢’ one gets the P on-shell equations

Xp = &5 Vi(q,4) = 0.

Being functions of (g, ¢) these are not genuine equations of motion but — if not fulfilled
identically — they restrict the dynamics to a subspace within the configuration-velocity
space (or in geometrical terms, the tangent bundle 7'Q). For reasons of consistency,
the time derivative of these constraints must not lead outside this subspace. This con-
dition possibly enforces further Lagrangian constraints and by this a smaller subspace
of allowed dynamics, etc.

The previous considerations are carried over to a field theory with a generic
Lagrangian density £(Q%,0,Q%). Rewrite the field equations as

oL oL oL 0°L 0°L
o _ _ _ 8Y\_ By B

Lo = e aga (o anLaQﬁQ»#> oQuQ8, O = Ye T Was G
(A.5)

With the choice of the time variable 7' = 2° the Hessian is defined by?!

0*L

Weag = . A6
* 7 0(0:0m0(00Q") (40

31 Observe that the Hessian depends on the selection of the time variable. This indeed has
the direct consequence that the number of null eigenvectors and of (primary) constraints
depends on this choice.
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If the rank of this matrix is R < N, it has P = N-R null eigenvectors

€% Was = 0. (A7)

A.2 Klein-Noether identities and phase-space constraints
A.2.1 Klein-Noether identities

In 1918, Emmy Noether [15] wrote an article dealing with the consequences of sym-
metries of action functionals

S = /deE(QO‘,BMQ“).

For symmetry transformations 6sQ®, dgz* her central identity is
[£]00sQ* + 0, J5 =0 (A.8)

with the Noether current

oL -
JH = 0sQ + Logxt — X%, (A.9)
5 0(0,Q%) g
where X4 is a possible surface term.
Noether’s so-called second theorem deals with local symmetries, here restricted to
transformations of the form?3?

ozt = D (x) € (x) (A.10a)
0:Q% = AZ(Q) €' () + B(Q) €, (x) (A.10b)

If one expands the Noether current int terms with the ’descriptors’ €” and their
derivatives,

JE = gle" + Kkl O e = [ — O, kE )€ + O, (kY eT) (A.11)

Inserting this and the transformations (A.10) into the invariance condition (A.8), the
separate vanishing of coefficients in front of the €” and those in front of their first and
second derivatives gives rise to three sets of identities:

kXY + kXt = 0. (A.12a)
(L] BO" 4+ jF — 8,k =0 (A.12b)
[L]a AT + 8,k =0, (A.12¢)

where the first two sets do not exist in the case of global symmetries. The two sets of
identities (A.12c) and (A.12b) together imply

Ni = [Lla(AY = QDY) — 0u([L]aB) = 0. (A.13)

In the literature today when Noether’s second theorem is mentioned, one mostly has
these identities in mind.

32 This form holds for our fundamental interactions as they are known today, that is for
the case of Yang-Mills type theories and for general relativity.
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A.2.2 Constraints as a consequence of local symmetries

Let us identify the terms with the highest possible derivatives of the fields Q¢
in (A.13) by using the expression (A.5) which already isolates the second derivatives.
A further derivative possibly originates from the last term in the Noether identity.
It reads B?“Wé‘g Q,ﬁ vy This term must vanish itself for all third derivatives of the
fields, and therefore

Bﬁ‘(“Wi;) =0,

where the symmetrization goes over u, A,v. Among these identities is the Hessian,
and one finds

B Wag = 0. (A.14)

Thus the non-vanishing B, are null-eigenvectors of the Hessian. And comparing this
with (A.7) there must be linear relationships B%, = A? {*, with coefficients A7. In
case all or some of the B, are zero, one can repeat the previous argumentation by
singling out the terms with second derivatives, and find again that the Hessian has
a vanishing determinant. Thus every action which is invariant under local symmetry
transformations necessarily describes a singular system. This, however, should not
lead to the impression that any singular system exhibits local symmetries: a system
can become singular just by the choice of the time variable.

A.3 Dirac-Bergmann algorithm

Since the fields and the canonical momenta are not independent, they cannot be taken
as coordinates in a phase space as one is accustomed in the unconstrained case. This
difficulty was known already by the end of the 1920’s, and after unsatisfactory at-
tempts by eminent physicists such as Pauli, Heisenberg, and Fermi this problem was
attacked by L. Rosenfeld. As shown in the main part of this article, he undertook the
very ambitious effort of obtaining the Hamiltonian version for the Einstein-Maxwell
theory as a preliminary step towards quantization. But only in the late forties and
early fifties did the Hamiltonian version of constrained dynamics acquire a substan-
tially mature form due to P. Bergmann and collaborators on the one hand [5,6,9,10,12]
and due to Dirac [7,8] on the other hand.

A.3.1 Primary constraints

The rank of the Hessian (A.2) being R = N — P implies that — at least locally — the
equations (A.3) can be solved for R of the velocities in terms of the positions, some
of the momenta and the remaining velocities. Furthermore, there are P relations

which restrict the dynamics to a subspace I'p C I' of the full phase space I'. These
relations were dubbed primary constraints by Anderson and Bergmann, a term sug-
gesting that there are possibly secondary and further generations of constraints?3.

33 For many of the calculations below, one needs to set regularity conditions, namely (1) the

Hessian of the Lagrangian has constant rank, (2) there are no ineffective constraints, that
is constraints whose gradients vanish on I'p, (3) the rank of the Poisson bracket matrix of
constraints remains constant in the stabilization algorithm described below.
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A.3.2 Weak and strong equations

It will turn out that even in the singular case, one can write the dynamical equations in
terms of Poisson brackets. But one must be careful in interpreting them in the presence
of constraints. In order to support this precaution, Dirac contrived the concepts of
“weak” and “strong” equality.

If a function F'(p,q) which is defined in the neighborhood of I'p becomes identi-
cally zero when restricted to I'p it is called “weakly zero”, denoted by F' =~ 0:

F(g.p)|,, =0 <  F=0.

(Since in the course of the algorithm the constraint surface is possibly narrowed down,
a better notation would be F' = rp 0 .) If the gradient of F is also identically zero on

I'p, Fis called “strongly zero”, denoted by F' ~ 0:

OF OF
Fanly =0 (), =0 Feo

It can be shown that
Fx=0 +— F—ff¢,~0.

Indeed, the subspace I'p can itself be defined by the weak equations ¢, ~ 0.

A.3.3 Canonical and total Hamiltonian

Next introduce the “canonical” Hamiltonian by
He = pig' — L(g, q)
Its variation yields

oL ... oL
0G4 =q 5pi—8i
q

aq o9

i g OL
dHe = (6pi)¢" + pidq" — aqicsq -

(after using the definition of momenta), revealing the remarkable fact that the canon-
ical Hamiltonian can be written in terms of ¢’s and p’s. No explicit dependence on
any velocity variable is left, despite the fact that the Legendre transformation is
non-invertible. Observe, however, that the expression for § Ho given in terms of the
variations d¢° and dp; does not allow the derivation of the Hamilton equations of
motion, since the variations are not independent due to the existence of primary con-
straints. In order that these be respected, the variation of Ho needs to be performed
together with Lagrange multipliers. This gives rise to define the ”total” Hamiltonian

Hp:=Hc + Up(bp (A16)

with arbitrary multiplier functions u” in front of the primary constraint functions.
Varying the total Hamiltonian with respect to (u, ¢, p) one obtains the primary con-
straints and

OHc | ,00,

Op; +u opr q (A.17a)
OHc  ,0¢, 0L

g +u of ~ og Di (A.17D)
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where the last relation follows from the definition of momenta and the Euler-Lagrange
equations. This recipe for treating the primary constraints with Lagrange multipliers
sounds reasonable; a mathematical justification was given in Battle et al. [65]. Equa-
tions (A.17) are reminiscent of the Hamilton equations for regular systems. However,
there are extra terms depending on the primary constraints and the multipliers. Nev-
ertheless, (A.17) can be written in terms of Poisson brackets, provided one adopts the
following convention: Consider

{F7 HT} = {F7 HC + up(bp} = {F7 HC} + U’p{Fv ¢P} =+ {F7 UP}QSP'

Since the multipliers u, are not phase-space functions, the Poisson brackets {F,u”}
are not defined. However, these appear multiplied with constraints and thus the last
term vanishes weakly. Therefore the dynamical equations for any phase-space function
F(q,p) can be written as:

F(p.q) ~ {F, Hr}. (A.18)

A.3.4 Stability of constraints

For consistency of a theory, one must require that the primary constraints are con-
served during the dynamical evolution of the system:

0~ Gp = {Pps Ho'} +u"{¢p, b0} i= hp + Coou”. (A.19)

There are essentially two distinct situations, depending on whether the determinant
of Cys vanishes (weakly) or not

e detC' # 0: In this case (A.19) constitutes an inhomogeneous system of linear
equations with solutions u” ~ —C??h,, where C is the inverse of the matrix C.
Therefore, the Hamilton equations of motion (A.18) become

F~{F Hc} —{F, ¢,}C"{¢,, Hc},

which are free of any arbitrary multipliers.

e det C' = 0: In this case, the multipliers are not uniquely determined and (A.19) is
only solvable if the h, fulfill certain relations, derived as follows: Let the rank of C'
be M. This implies that there are (P-M) linearly-independent null eigenvectors,

ie. wCp, ~ 0 from which by (A.19) one finds the conditions 0 ~ wfh,. These
either are fulfilled or lead to a certain number S’ of new constraints ¢, ~ 0
p=P+1,...,P+ 5 called “secondary” constraints. The primary and secondary
constraints define a hypersurface I, C I'p. In a further step one has to check
that the original and the newly generated constraints are conserved on 5. This
might imply another generation of constraints, defining a hypersurface I's C I,
etc., etc. In most physically relevant cases, the algorithm terminates with the
secondary constraints.

The algorithm terminates when the following situation is attained: There is a hyper-
surface I'c defined by the constraints

Gp R, 0 p=1,...,P and b5 ~p, 0 p=P+1,...,P+S.
(A.20)
The first set {¢,} contains all P primary constraints, the other set {¢5} comprises all
secondary, tertiary, etc. constraints, assuming there are S of them. It turns out to be
convenient to use a common notation for all constraints as ¢, with p=1,..., P+ S.
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Furthermore, for every left null-eigenvector w? of the matrix C’ﬁp = {¢;,¢,}, the con-
ditions wg{qbﬁ, Hc} = ro 0 are fulfilled. For the multiplier functions w”, the equations

{05 He} +{¢p ¢p}u” =~ 0. (A.21)

hold. In the following, weak equality ~ is always understood with respect to the
“final” constraint hypersurface I'c.

A.3.5 First- and second-class constraints

Curiosity about the fate of the multiplier functions leads to the notion of first- and
second-class objects.

Some of equations (A.21) may be fulfilled identically, others represent conditions
on the u”. The details depend on the rank of the matrix C. If the rank of C is P, all
multipliers are fixed. If the rank of ' is K < P there are P-K solutions of

Cop Vi = {0, 6, } VP = 0. (A.22)

The most general solution of the linear inhomogeneous equations (A.21) is the sum of
a particular solution U” and a linear combination of the solutions of the homogeneous

part:
u’ =UP 4+ 0*VYP (A.23)

with arbitrary coefficients v*. Together with ¢,, also the linear combinations
(ba = V(f(bp (A24)

constitute constraint functions. According to (A.22), these have the property that
their Poisson brackets with all constraints vanish on the constraint surface.

A phase-space function F(p,q) is said to be first class (FC) if it has a weakly
vanishing Poisson bracket with all constraints in the theory:

{F(p,q), 65} = 0.

If a phase-space object is not first class, it is called second class (SC). Due to the
definitions of weak and strong equality a first-class quantity obeys the strong equation

{-7:7¢ﬁ} 2fg¢f77

from which by virtue of the Jacobi identity one infers that the Poisson bracket of two
FC objects is itself an FC object.

It turns out to be advantageous to reformulate the theory completely in terms of
its maximal number of independent FC constraints and the remaining SC constraints.
Assume that this maximal number is found after building suitable linear combina-
tions of constraints. Call this set of FC constraints @¢; (I = 1...,L) and denote the
remaining second class constraints by x.4. Evidence that one has found the maximal
number of FC constraints is the non-vanishing determinant of the matrix built by the
Poisson brackets of all second class constraints

(Aap) = {xa,xB} (A.25)
Rewriting the total Hamiltonian (A.16) with the aid of (A.23) as

Hy = H +10%¢, with H' =He + UPg,, (A.26)
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one observes that H' is itself first class, and that the total Hamiltonian is a sum of
a first class Hamiltonian and a linear combination of primary first class constraints
(PFC).

Consider again the system of equations (A.21). They are identically fulfilled for
the FC constraints. For a SC constraint, these equations can be written as

{xa,Ho} + AapuP =0

with the understanding that u” = 0 if x” is a secondary constraint (SC). For the
other multipliers holds

uf = A" {xa, H.} for xp primary. (A.27)

where A is the inverse of A. As a result, all multipliers belonging to the primary
second-class constraints in H' of (A.26) are determined, and that only the v* are
left open: There are as many arbitrary functions in the Hamiltonian as there are
(independent) primary first-class constraints (PFC).

Inserting the solutions (A.27) into the Hamilton equations (A.18), they become

F(p,q) ~{F, Hr} ~ {F, Ho} + {F, ¢ }v® — {F,xa}A" " {xp, He}. (A.28)

A.4 First-class constraints and symmetries
A.4.1 ‘“First-class constraints are gauge generators”: perhaps some

It was argued that a theory with local variational symmetries necessarily is described
by a singular Lagrangian and that it acquires constraints in its Hamiltonian descrip-
tion. The previous section revealed the essential difference between regular and singu-
lar systems in that for the latter, there might remain arbitrary functions as multipliers
of primary first-class constraints. An educated guess leads to suspect that these con-
straints are related to the local symmetries on the Lagrange level. This guess points
in the right direction, but things aren’t that simple. Dirac, in his famous lectures [7,8]
introduced an influential invariance argument by which he conjectured that also sec-
ondary first-class constraints lead to invariances. His argumentation gave rise to the
widely-held view that “first-class constraints are gauge generators”. Aside from the
fact that Dirac did not use the term “gauge” anywhere in his lectures, later work on re-
lating the constraints to variational symmetries revealed that a detailed investigation
on the full constraint structure of the theory in question is needed; see Pons [66].

A.4.2 Relating Lagrangian and Hamiltonian symmetries
Why at all should the symmetry transformations as given by (A.10), that is
0:Q% = AZ(Q) - €"(x) + BI(Q) - € (2) + .., (A.29)
be related to canonical transformations
5.Q% = {Q*, 2r}? (A.30)

Is there a mapping between the parameter functions " and e/? Can one specify an
algorithm to calculate the generators of Noether symmetries in terms of constraints?
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Ignoring Rosenfeld, it seemed that the very first people to address these questions
were Anderson and Bergmann (1951) — even before the Hamiltonian procedure for
constrained systems was fully developed. Mukunda [61] started off from the chain
(A.12) of Klein-Noether identities and built symmetry generators as linear combina-
tions of first class primary and secondary constraints from them, assuming that no
tertiary constraints are present. Castellani [29] devised an algorithm for calculating
symmetry generators for local symmetries, implicitly neglecting possible second-class
constraints.

A.5 Second-class constraints and gauge conditions

The previous subsection dealt at length with first-class constraints because they are
related to variational symmetries of the theory in question. Second-class constraints
x4 enter the Hamiltonian equations of motion (A.28) without arbitrary multipliers.
If there are no first-class constraints the dynamics is completely determined by

F(p,q) ~ {F, Hr} ~ {F, Ho} — {F,xa}A" " {x5, Hc}

without any ambiguity.

A.5.1 Dirac bracket

Dirac introduced in [7] a “new P.b.”:

{F,G} = {F,G} = {F,xa} A" {x5,G} (A.31)

nowadays called the Dirac bracket (DB). Sometimes for purposes of clarity it is ju-
dicious to indicate in the notation {F, G} that the DB is built with respect to the
matrix A. The Dirac bracket satisfies the same properties as the Poisson bracket, i.e.
it is antisymmetric, bilinear, and it obeys the product rule and the Jacobi identity.
Furthermore, the DBs involving SC and FC constraints obey

{F,XA}*EO {F,@[}*%{F,Qv)[}.

Thus when working with Dirac brackets, second-class constraints can be treated as
strong equations. The equations of motion (A.28) written in terms of DBs are

F(p,q) ~ {F,Hr}". (A.32)

A5.2 "Gauge' fixing

The existence of unphysical symmetry transformations indicated by the presence of
first-class constraints may make it necessary to impose conditions on the dynamical
variables. This is specifically the case if the observables cannot be constructed explic-
itly — and this is notably true in general for Yang-Mills and for gravitational theories.
These extra conditions are further “gauge” constraints3*

Qa(q7p) ~ 07 (A?)?))

34 «“gauge” is put in hyphens here since in generally covariant systems a proper name would

be coordinate condition.
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where now weak equality refers to the hypersurface I'r defined by the weak vanishing
of all previously found first- and second-class constraints, that is the hypersurface I'c
together with the constraints (A.33). The idea is that the quest for stability of these
constraints, namely

[ AB
O%QaQ‘“{QaaHC}+{Qa7¢a}Ua_{Qa7XA}A {XB7HC}

is meant to uniquely determine the multiplier v®. At least for finite-dimensional sys-
tems, the previous condition can be read as a linear system of equations which has
unique solutions if the number of independent gauge constraints is the same as the
number of primary FC constraints and if the gauge constraints are chosen so that the
determinant of the matrix

Apa = {2560} (A.34)

does not vanish®. In this case the multipliers are fixed to:

o @ AB
vt =A V[_{“Q’WIJC]’"'{-Q'anA}A {XB,HC}]-
Some remarks concerning the choice of gauge constraints £2¢:

o The condition of a non-vanishing determinant (det(Ang) # 0) is only a sufficient
condition for determining the arbitrary multipliers connected with the primary
FC constraints.

e The gauge constraints must not only be such that the “gauge” freedom is removed
(this is guaranteed by the non-vanishing of det A), but also the gauge constraints
must be accessible: for any point in phase space with coordinates (g,p), there
must exist a transformation (¢,p) — (¢’,p’) such that 2,(¢’,p’) ~ 0. This may
be achievable only locally.

e In case of reparametrization invariance (at least one of) the gauge constraints must
depend on the parameters explicitly — and not only on the phase-space variables.

e Especially in field theories it may be the case that no globally admissible (unique
and accessible) gauge constraints exist. An example is given by the Gribov ambi-
guities, as they were first found in in Yang-Mills theories.
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