Skip to main content
Log in

Nordic cosmogonies: Birkeland, Arrhenius and fin-de-siècle cosmical physics

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

During the two decades before World War I, many physicists, astronomers and earth scientists engaged in interdisciplinary research projects with the aim of integrating terrestrial, solar and astronomical phenomena. Under the umbrella label “cosmical physics” they studied, for example, geomagnetic storms, atmospheric electricity, cometary tails and the aurora borealis. According to a few of the cosmical physicists, insights in solar-terrestrial and related phenomena might be extrapolated to the entire solar system or beyond it. Inspired by their research in the origin and nature of the aurora, Kristian Birkeland from Norway and Svante Arrhenius from Sweden proposed new theories of the universe that were of a physical rather than astronomical nature. Whereas Birkeland argued that electrons and other charged particles penetrated the entire universe – and generally that electromagnetism was of no less importance to cosmology than gravitation – Arrhenius built his cosmology on the hypothesis of dust particles being propelled throughout the cosmos by stellar radiation pressure. Both of the Scandinavian scientists suggested that the universe was infinitely filled with matter and without a beginning or an end in time. Although their cosmological speculations did not survive for long, they are interesting early attempts to establish physical cosmologies and for a while they attracted a good deal of attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbe, C. 1911. The meteorology of the future. Pop. Sci. Month. 78: 21-35

    Google Scholar 

  2. Alfvén, H. 1950. Cosmical Electrodynamics. Clarendon Press, Oxford

  3. Anderson, J.A. 1908. The work of Prof. Carl Störmer on Birkeland’s theory of the aurora borealis. Month. Weather Rep. 36: 129-131

    Article  ADS  Google Scholar 

  4. Arrhenius, G. 1959. Svante Arrhenius’ contributions to earth science and cosmology. In Svante Arrhenius, till 100-Årsminnet av hans Födelse. Almqvist & Wiksell, Uppsala, pp. 67-81

  5. Arrhenius, S. 1900. Über die Ursache der Nordlichter. Physik. Zeits. 2: 81-87, 97-105

    Google Scholar 

  6. Arrhenius, S. 1901. Zur Kosmogonie. Arch. Sci. Phys. Nat. 6: 862-873

    MATH  Google Scholar 

  7. Arrhenius, S. 1903a. On the electric equilibrium of the sun. Month. Not. Roy. Astron. Soc. 64: 496-499

    Google Scholar 

  8. Arrhenius, S. 1903b. Lehrbuch der kosmischen Physik. Hirzel, Leipzig

  9. Arrhenius, S. 1903c. Die Verbreitung des Lebens im Weltenraum. Die Umschau 7: 481-485

    Google Scholar 

  10. Arrhenius, S. 1904. On the physical nature of the solar corona. Astrophys. J. 20: 224-231

    Article  ADS  Google Scholar 

  11. Arrhenius, S. 1906. The relation of meteorology to other sciences. In International Congress of Arts and Sciences: Astronomy and Earth Sciences, edited by Howard J. Rogers. University Alliance, London, Vol. 3, pp. 733-740

  12. Arrhenius, S. 1908. Worlds in the Making: The Evolution of the Universe. Harper & Brothers, New York

  13. Arrhenius, S. 1909. Die Unendlichkeit der Welt. Scientia 5: 217-229

    Google Scholar 

  14. Arrhenius, S. 1912. Die Verteilung der Himmelskörper. Meddel. Kungl. Vetenskapsakad. Nobelinstitut 2: no. 21

    Google Scholar 

  15. Arrhenius, S. 1914. Das Milchstrassenproblem. Scientia 15: 349-363

    Google Scholar 

  16. Augur, A.W. 1901. [Review of Arrhenius’ theory of the aurora]. Astrophys. J. 13: 344-347

    Article  ADS  Google Scholar 

  17. Berny, A. 1913. Über kosmische Entwicklung. Das Weltall 13: 317-324

    Google Scholar 

  18. Birkeland, K. 1895. Solution générale des équations de Maxwell pour un milieu absorbant homogène et isotrope. Comptes Rendus 12: 1046-1050

    Google Scholar 

  19. Birkeland, K. 1896. Sur les rayons cathodiques sous l’action de forces magnétiques intenses. Arch. Sci. Phys. Nat. 1: 497-512

    Google Scholar 

  20. Birkeland, K. 1901. Expédition norvégienne de 1899-1900 pour l’étude des auroras boréales. Videnskabsselskabets Skrifter, I, no. 1: 1-180

  21. Birkeland, K. 1908. The Norwegian Aurora Polaris Expedition 1902-1903, H. Aschehoug & Co., Christiania, Vol. 1, Section 1

  22. Birkeland, K. 1911. Les anneaux de Saturne sont-ils dus à une radiation électrique de la planète? Comptes Rendus 153: 375-377

    Google Scholar 

  23. Birkeland, K. 1913a. The Norwegian Aurora Polaris Expedition 1902-1903, H. Aschehoug & Co., Christiania, Vol. 1, Section 2

  24. Birkeland, K. 1913b. The origin of worlds. Sci. Am., Suppl. 76: 7-9, 12, 20-22

    Google Scholar 

  25. Birkeland, K. 1913c. De l’origine des mondes. Arch. Sci. Phys. Nat. 35: 529-564

    Google Scholar 

  26. Birkeland, K. 1916. Les rayons corpusculaires du soleil qui pénètrent dans l’atmosphère terrestre: sont-ils négatifs ou positifs? Arch. Sci. Phys. Nat. 41: 22-37, 108-124

    Google Scholar 

  27. Block, L. 1955. Model experiments on aurorae and magnetic storms. Tellus 7: 65-86

    Article  ADS  Google Scholar 

  28. Borowitz, S. 2008. The Norwegian and the Englishman. Phys. Persp. 10: 287-294

    Article  MathSciNet  Google Scholar 

  29. Clerke, A.M. 1903. Problems in Astrophysics. Adam & Charles Black, London

  30. Clerke, A.M. 1905. Modern Cosmogonies. Adam & Charles Black, London

  31. Cox, J. 1902a. Comets’ tails, the corona and the aurora borealis. Pop. Sci. Month. 60, 266-278

    Google Scholar 

  32. Cox, J. 1902b. On prof. Arrhenius’ theory of cometary tails and auroræ. Nature 66: 54-56

    Article  ADS  Google Scholar 

  33. Crawford, E. 1996. Arrhenius: From Ionic Theory to the Greenhouse Effect. Science History Publications, Canton, MA

  34. Crawford, E. 1997. Arrhenius’ 1896 model of the greenhouse effect in context. Ambio 26, no. 1: 6-11

    Google Scholar 

  35. Crawford, E. 2002. The Nobel Population 1901-1950. A Census of the Nominators and Nominees for the Prizes in Physics and Chemistry. Universal Academy Press, Tokyo

  36. Dick, S.J. 1996. The Biological Universe: The Twentieth-Century Extraterrestrial Life Debate. Cambridge University Press, Cambridge

  37. Egeland, A. and W.J. Burke. 2010. Kristian Birkeland: The First Space Scientist. Springer, Dordrecht

  38. Egeland, A. and W.J. Burke. 2013. Carl Størmer: Auroral Pioneer. Springer, Berlin

  39. Ekholm, N. 1902. Die Extinktion des Lichtes im Weltall. Met. Zeits. 19: 242-244

    Google Scholar 

  40. Friedman, R.M. 1995. Civilization and national honour: The rise of Norwegian geophysical and cosmic science. In Making Sense of Space: The History of Norwegian Space Activities, edited by J.P. Collett. Scandinavian University Press, Oslo, pp. 3-40

  41. Friedman, R.M. 2001. The Politics of Excellence: Behind the Nobel Prize in Science. W.H. Freeman, New York

  42. Goldstein, E. 1881. Ueber die Entladung der Elektricität in verdünnten Gasen. Ann. Phys. 12: 249-279

    Article  Google Scholar 

  43. Halm, J. 1902. On prof. Arrhenius’ theory of cometary tails and auroræ. Nature 65: 415-416; 66: 55-56

    Article  Google Scholar 

  44. Hammerl, C., W. Lenhardt, R. Steinacker and P. Steinhauser, eds. 2001. Die Zentralanstalt für Meteorologie und Geodynamik: 150 Jahre Meteorologie und Geophysik in Österreich. Leykam Buchverlagsgesellschaft, Graz

  45. Hedenus, M. 2007. Der Komet in der Entladungsröhre: Eugen Goldstein, Wilhelm Foerster und die Elektrizität im Weltraum. GNT-Verlag, Stuttgart

  46. Hirsh, R.F. 1985. Glimpsing the Invisible Universe: The Emergence of X-ray Astronomy. Cambridge University Press, Cambridge

  47. Holmberg, G. 1999. Reaching for the Stars: Studies in the History of Swedish Stellar and Nebular Astronomy. Ugglan, Lund

  48. Jago, L. 2001. The Northern Lights: The True Story of the Man Who Unlocked the Secrets of the Aurora Borealis. Alfred A. Knopf, New York

  49. Jørgensen, T.S. and O. Rasmussen. 2006. Adam Paulsen, a pioneer in auroral research. EOS 87, no. 6: 61-66

    Article  ADS  Google Scholar 

  50. Kamminga, H. 1982. Life from space – a history of panspermia. Vistas Astron. 26: 67-86

    Article  ADS  Google Scholar 

  51. Kragh, H. 1995. Cosmology between the wars: The Nernst-MacMillan alternative. J. Hist. Astron. 26: 93-115

    MathSciNet  ADS  Google Scholar 

  52. Kragh, H. 2007a. Conceptions of Cosmos. From Myths to the Accelerating Universe: A History of Cosmology. Oxford University Press, Oxford

  53. Kragh, H. 2007b. Cosmic radioactivity and the age of the universe, 1900-1930. J. Hist. Astron. 38: 393-412

    ADS  Google Scholar 

  54. Kragh, H. 2008. Entropic Creation: Religious Contexts of Thermodynamics and Cosmology. Ashgate, Aldershot

  55. Kragh, H. 2009. The spectrum of the aurora borealis: From enigma to laboratory science. Hist. Stud. Nat. Sci. 39: 377-417

    Google Scholar 

  56. Kragh, H. 2012. Is space flat? Nineteenth-century astronomy and non-Euclidean geometry. J. Astron. Hist. Heritage 15: 149-158

    ADS  Google Scholar 

  57. Kragh, H. 2013. The rise and fall of cosmical physics: Notes for a history, ca. 1850-1920. Arxiv: 1304.3890 [physics.hist-ph]

  58. Kragh, H. and B. Carazza. 1990. Augusto Righi’s magnetic rays: A failed research program in early 20th-century physics. Hist. Stud. Phys. Sci. 21: 1-28

    Google Scholar 

  59. Langmuir, I. 1928. Oscillations in ionized gases. Proc. Natl. Acad. Sci. 14: 627-637

    Article  ADS  Google Scholar 

  60. Lockyer, W.J. 1894. Text-book of cosmical physics. Nature 50: 49-50

    Article  ADS  Google Scholar 

  61. Malmfors, K.G. 1946. Experiments on the aurorae. Ark. Mat. Astr. Fys. B 34: 1-8

    Google Scholar 

  62. Morrisson, Mark S. 2007. Modern Alchemy: Occultism and the Emergence of Atomic Theory. Oxford University Press, Oxford

  63. Mott-Smith, H.M. 1971. History of “plasmas.” Nature 233: 219

    Article  ADS  Google Scholar 

  64. Müller, J. and C.F.W. Peters. 1894. Joh. Müller’s Lehrbuch der kosmischen Physik. Vieweg und Sohn, Braunschweig

  65. Norton, J.D. 1999. The cosmological woes of Newtonian gravitation theory. In The Expanding World of General Relativity, edited by Hubert Goenner et al. Birkhäuser, Boston, pp. 271-324

  66. Oberkofler, G. et al. 1990. 100 Jahre Institut für Meteorologie und Geophysik (Kosmische Physik) der Leopold-Franzens-Universität Innsbruck. Wagnerschen Universitätsbuchhandlung, Innsbruck

  67. Paul, E.P. 1993. The Milky Way Galaxy and Statistical Cosmology 1890-1924. Cambridge University Press, Cambridge

  68. Paulsen, A. 1906. Sur les récentes theories de l’aurore polaire. Bull. l’Acad. Roy. Sci. Danemark 2: 109-144

    Google Scholar 

  69. Peratt, A.L. 1985. Birkeland and the electromagnetic cosmology. Sky & Telescope 69: 389-391

    ADS  Google Scholar 

  70. Peratt, A.L. 1995. Introduction to plasma astrophysics and cosmology. Astrophys. Space Sci. 227: 3-11

    Article  ADS  Google Scholar 

  71. Poincaré, H. 1896. Remarques sur une expérience de M. Birkeland. Comptes Rendus 123: 530-533

    Google Scholar 

  72. Poincaré, H. 1911. Leçons sur les Hypothèses Cosmogoniques. A. Hermann, Paris

  73. Poincaré, H. 1913. Dernières Pensées. Flammarion, Paris

  74. Potemra, T.A. 1988. Birkeland currents in the Earth’s magnetosphere. In Plasma in the Universe, edited by C.-G. Fälthammar et al. Springer, Berlin, pp. 155-169

  75. Romer, R.H. 1982. Alternatives to the Poynting vector for describing the flow of electromagnetic energy. Am. J. Phys. 50: 1166-1168

    Article  ADS  Google Scholar 

  76. Rypdal, K. and T. Brundtland. 1997. The Birkeland terrella experiments and their importance for the modern synergy of laboratory and space plasma physics. J. Physique IV 7, C4: 113-132

    Article  Google Scholar 

  77. Schuster, A. 1911. On the origin of magnetic storms. Proc. Roy. Soc. 85: 44-50

    Article  ADS  Google Scholar 

  78. Schwarzschild, K. 1913. [Review of Poincaré, 1911]. Astrophys. J. 37: 294-298

    Article  ADS  Google Scholar 

  79. Schwarzschild, K. 1992. Der Druck des Lichts auf kleine Kugeln und die Arrhenius’sche Theorie der Cometenschweife. In Karl Schwarzschild. Gesammelte Werke, Vol. 1, edited by H.H. Voigt. Springer Verlag, Berlin, pp. 317-322

  80. Snyder, C. 1907a. New epic of creation. New York Times, 6 July

  81. Snyder, C. 1907b. The World Machine. The First Phase: The Cosmic Mechanism. Longmans, Green, and Co., London

  82. Stubhaug, A. 2010. Gösta Mittag-Leffler: A Man of Conviction. Springer-Verlag, Berlin

  83. Størmer, C. 1917. Corpuscular theory of the aurora borealis. Terrestr. Magn. Atm. Electr. 22: 23-34

    Article  Google Scholar 

  84. Størmer, C. 1955. The Polar Aurora. Clarendon Press, Oxford

  85. Thomson, J.J. 1897. Cathode rays. Phil. Mag. 44: 296-314

    Google Scholar 

  86. Thomson, J.J. 1901. The existence of bodies smaller than atoms. Proc. Roy. Inst. 16: 138-150

    Google Scholar 

  87. Thomson, J.J. 1903. Conduction of Electricity through Gases. Cambridge University Press, Cambridge

  88. Trabert, W. 1911. Lehrbuch der kosmischen Physik. B.G. Teubner, Leipzig

  89. Walter, S., ed. 2007. La Correspondance entre Henri Poincaré et les Physiciens, Chimistes et Ingénieurs. Birkhäuser, Basel

  90. Worrall, J. 1982. The pressure of light: The strange case of the vacillating “crucial experiment.” Stud. Hist. Phil. Sci. 13, 133-171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Kragh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kragh, H. Nordic cosmogonies: Birkeland, Arrhenius and fin-de-siècle cosmical physics. EPJ H 38, 549–572 (2013). https://doi.org/10.1140/epjh/e2013-40014-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2013-40014-0

Keywords

Navigation