Skip to main content
Log in

The history of X-ray free-electron lasers

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 Å, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 1013 to 1011, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaria, E. et al. 2006. FERMI@ELETTRA : a seeded FEL facility for EUV and soft X-rays. Proc. of the 2006 International Free Electron Laser Conf., Berlin, pp. 166–169

  2. Alley, R. et al. 1999. The design for the LCLS RF Photoinjector. Nucl. Instr. Meth. A 429: 324-331

    Article  ADS  Google Scholar 

  3. Andruszkow, J. et al. 2000. First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength. Phys. Rev. Lett. 85: 3825-3829

    Article  ADS  Google Scholar 

  4. Arthur, J., G. Materlik and H. Winick (Eds.) 1994. Workshop on Scientific Applications of Coherent X-Rays. SLAC Rep., p. 437

  5. Ayvazyan, V. et al. 2002. Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime. Phys. Rev. Lett. 88: 104802

    Article  ADS  Google Scholar 

  6. Babzien, M. et al. 1998. Observation of self-amplified spontaneous emission in the near-infrared and visible wavelengths. Phys. Rev. E 57: 6093-6096

    Article  ADS  Google Scholar 

  7. Bane, K. 1987. Wakefield effects in a linear collider. Amer. Inst. Phys. Conf. Proc. 153: 971-981

    Google Scholar 

  8. Batchelor, K., H. Kirk, K. McDonald, J. Sheehan and M. Woodle. 1988. Development of a High Brightness Electrpon Gun for the Accelerator Test Facil;ity at Brookhaven National Laboratory. Proc. of the 1988 European Particle Accelerator Conf., Rome, pp. 54–958

  9. Becker, W. and J.K. McIver. 1983. Fully quantized many-particle theory of a free-electron laser. Phys. Rev. A 27: 1030-1043

    Article  ADS  Google Scholar 

  10. Becker, W. and M.S. Zubairy. 1982. Photon statistics of a free-electron laser. Phys. Rev. A 25: 2200-2207

    Article  MathSciNet  ADS  Google Scholar 

  11. Belkacem, A. et al. 2007. Design studies for a high repetition rate FEL facility at LBNL. Synchrotron Radiat. News 20: 20-27

    Article  Google Scholar 

  12. Ben-Zvi, I., L.F. Di Mauro, S. Krinsky, M.G. White and L.H. Yu. 1991. Proposed UV FEL user facility at BNL. Nucl. Instr. Meth. A 304: 181-186

    Article  ADS  Google Scholar 

  13. Bertolotti, M. 2005. History of the laser. Institute of Physics Publishing, Bristol

  14. Birgenau, R.J. et al. 1997. Report of the Basic Energy Sciences Advisory Committee Panel on D.O.E. synchrotron radiation sources and science, http://www.aps.anl.gov/Science/Reports/1997/besac.pdf

  15. Bonifacio, R., F. Casagrande and G. Casati. 1982. Cooperative and Chaotic Transition of a Free Electron Laser Hamiltonian Model. Opt. Commun. 40: 219-223

    Article  ADS  Google Scholar 

  16. Bonifacio, R., F. Casagrande and C. Pellegrini. 1987. Hamiltonian model of a free-electron laser. Opt. Commun. 61: 55-60

    Article  ADS  Google Scholar 

  17. Bonifacio, R., L. De Salvo Souza, P. Pierini and E.T. Scharlemann. 1990. Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier. Nucl. Instr. Meth. A 296: 787-790

    Article  ADS  Google Scholar 

  18. Bonifacio, R., L. De Salvo, P. Pierini, N. Piovella and C. Pellegrini. 1994. Spectrum, Temporal Structure and Fluctuations in a High-Gain free-electron laser starting from noise. Phys. Rev. Lett. 73: 70-73

    Article  ADS  Google Scholar 

  19. Bonifacio, R., C. Pellegrini and L. Narducci. 1984. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50: 373-378

    Article  ADS  Google Scholar 

  20. Borland, M. et al. 2002. Start-to-end simulation of self amplified spontaneous emission free-electron lasers from the gun through the undulator. Nucl. Instr. Meth. A 483: 268-272

    Article  ADS  Google Scholar 

  21. Boscolo, I. and V. Stagno. 1982. A Study of a transverse optical klystrin in Adone (TOKA). Nucl. Instr. Meth. A 198: 483-496

    Article  Google Scholar 

  22. Bosco, P., W.B. Colson and R.A. Freeman. 1983. Quantum/classical mode evolution in free electron laser oscillators. IEEE J. Quantum Electron. QE-19: 272-281

    Article  ADS  Google Scholar 

  23. Carlsten, B.E. 1989. New photoelectron injector design for the Los Alamos national laboratory XUV FEL accelerator. Nucl. Instr. Meth. A 285: 313-319

    Article  ADS  Google Scholar 

  24. Chapman, H. et al. 2006. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys. 2: 839-843

    Article  ADS  Google Scholar 

  25. Chapman, H. et al. 2011. Femtosecond X-ray protein nanocrystallography. Nature 470: 73-78

    Article  ADS  Google Scholar 

  26. Chattopadhyay, S., M. Cornacchia, C. Pellegrini and I. Lindau (Eds.) 2001. Physics of, and Science with, X-ray free-electron lasers. Amer. Inst. Phys. Conf. Proc. 581: 1-236

    Google Scholar 

  27. Colson, W.B. 1977. One-body electrodynamics in a free electron laser. Phys. Lett. A 64: 190-192

    Article  ADS  Google Scholar 

  28. Cornacchia, M. and H. Winick (Eds.) 1992. Proc. of a Workshop on IV Generation Light Sources, SSRL/SLAC Rep. 92/02

  29. Cornacchia, M. et al. 1986. Design concepts of a storage ring for a high power XUV free electron laser. Nucl. Instr. Meth. A 250: 57-63

    Article  ADS  Google Scholar 

  30. Cornacchia, M. et al. 1998. LCLS Design Study Report, Stanford Linear Accelerator Center, SLAC R-521

  31. Csonka, P. 1978a. Suggested method for coherent X-Ray production by combined X-ray and low energy photon pumping. Phys. Rev. A 13: 405-410

    Article  ADS  Google Scholar 

  32. Csonka, P. 1978b. Suggestion for X-ray laser holography. Part. Accel. 8: 161-165

    Google Scholar 

  33. Dattoli, G., J.C. Gallardo, A. Renieri, M. Richetta and A. Torre. 1985. Quantum coherence properties of the FEL. Nucl. Instr. Meth. A 237: 93-99

    Article  ADS  Google Scholar 

  34. Dattoli, G., A. Marino, A. Renieri and F. Romanelli. 1981. Progress in the Hamiltonian picture of the free-electron laser. IEEE J. Quantum Electron. QE-17: 1371-1387

    Article  ADS  Google Scholar 

  35. Deacon, D.A.G. et al. 1977. First operation of a free-electron laser. Phys. Rev. Lett. 38: 892-894

    Article  ADS  Google Scholar 

  36. De Ninno, G. et al. 2009. FEL Commissioning of the first stage of Fermi@Elettra. Proc. of the 2009 FEL Conf., Liverpool, pp. 635–638

  37. Derbenev, Y.S., A.M. Kondratenko and E.L. Saldin. 1982. On the possibility of using a free electron laser for polarization control in a storage ring. Nucl. Instr. Meth. A 193: 415-421

    Article  ADS  Google Scholar 

  38. Ding, Y. et al. 2009a. Start-to-End Simulations of the LCLS Accelerator and FEL Performance at Very Low Charge. Proc. of the 2009 Part. Acc. Conf., Vancouver, pp. 2355-2357

  39. Ding, Y. et al. 2009b. Measurements and Simulations of Ultralow Emittance and Ultrashort Electron Beams in the Linac Coherent Light Source. Phys. Rev. Lett. 102: 254801

    Article  ADS  Google Scholar 

  40. Dowell, D. et al. 2008. The Development of the Linac Coherent Light Source RF Gun. SLAC-Pub-13401

  41. Elias, L. et al. 1976. Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic field. Phys. Rev. Lett. 36: 717-720

    Article  ADS  Google Scholar 

  42. Emma, P., R. Carr and H.-D. Nuhn. 1999. Beam-based alignment for the LCLS FEL Undulator. Nucl. Instr. Meth. A 429: 407-413

    Article  ADS  Google Scholar 

  43. Emma, P. et al. 2009. First Lasing of the LCLS X-Ray FEL at 1.5 Å. Proc. of the 2009 Part. Acc. Conf., Vancouver, pp. 3115-3119

  44. Emma, P. et al. 2010. First lasing and operation of an Ångstrom-wavelength free-electron laser. Nature Photonics 176: 1-7

    Google Scholar 

  45. Faatz, B. et al. 2009. Flash Status and Upgrade. Proc. of the 2009 Free-electron Laser Conf., Liverpool, pp. 459-462

  46. Fawley, W.M. 2001. Ginger FEL simulation code. LBNL Technical Report No. 49625

  47. Fawley, W.M., Z. Huang, K.-J. Kim and N. Vinokurov. 2002. Tapered undulator for SASE FELs. Nucl. Instr. Meth. A 483: 537-541

    Article  ADS  Google Scholar 

  48. Feldhaus, J. et al. 1997. Possible application of X-Ray optical elements for reducing the spectral bandwith of an X-Ray SASE FEL. Opt. Commun. 140: 341-352

    Article  ADS  Google Scholar 

  49. Ferrario, M. et al. 2000. HOMDYN study for the LCLS rf photo-injector. in The Physics of High Brightness Beams, World Scientific Publisher, pp. 534-546

  50. Fraser, J.S. and R.L. Sheffield. 1987. High-brightness injectors for RF-driven free-electron lasers. IEEE J. Quantum Electron. QE-23: 1489-1496

    Article  ADS  Google Scholar 

  51. Fraser, J.S., R.L. Sheffield and E.R. Gray. 1986. A new high brightness electron injector for free electron lasers driven by RF Linacs. Nucl. Instr. Meth. A 250: 71-76

    Article  ADS  Google Scholar 

  52. Galayda, J. 2003. Private communication

  53. Gallardo, J. 1990. Proceedings of the Workshop Prospects for a 1 Å Free-electron Laser, Sag Harbor, N.Y. Brookhaven National Laboratory Rep. 52273

  54. Gea-Banacloche, J., G.T. Moore and M. Scully. 1984. Prospects for an X-ray free-electron laser. Proc. SPIE 453: 393-401

    Article  ADS  Google Scholar 

  55. Gluskin, E. et al. 2001. Optimization of the design for the LCLS undulator line. Nucl. Instr. Meth. A 475: 323-327

    Article  ADS  Google Scholar 

  56. Gopal, S. and J. Stohr (Eds.) 2003. LCLS The first experiments SLAC report R-611

  57. Gover, A. and P. Sprangle. 1981. A Unified Theory of Magnetic-Bremsstrahlung, Electrostatic Bremsstrahlung, Compton-Raman Scattering and Cerenkov-Smith Purcell Free Electron Laser. IEEE J. Quantum Electron. QE-17 : 1196-1215

    Google Scholar 

  58. Hartemann, S.C. et al. 1994. Initial Measurments on the UCLA RF Photoinjector. Nucl. Instr. Meth. A 340: 219-230

    Article  ADS  Google Scholar 

  59. Heifets, S., G. Stupakov and S. Krinsky. 2002. Coherent synchrotron radiation instability in a bunch compressor. Phys. Rev. ST Accel. Beams 5: 064401

    Article  ADS  Google Scholar 

  60. Hogan, M. et al. 1998a. Measurements of High Gain and Intensity Fluctuations in a Self-amplified, Spontaneous-Emission Free-electron Laser. Phys. Rev. Lett. 80: 289-292

    Article  ADS  Google Scholar 

  61. Hogan, M. et al. 1998b. Measurements of gain larger than 105 at 12 μm in a self-amplified spontaneous-emission free-electron laser. Phys. Rev. Lett. 81: 4867-4870

    Article  ADS  Google Scholar 

  62. Huang, Z. and K.-J. Kim. 2000. Three-dimensional analysis of harmonic generation in high-gain free-electron lasers. Phys. Rev. E 62: 7295-7308

    Article  ADS  Google Scholar 

  63. Huang, Z. and K.-J. Kim. 2002. Formulas for coherent synchrotron radiation microbunching in a bunch compressor chicane. Phys. Rev. ST Accel. Beams 5: 074401

    Article  ADS  Google Scholar 

  64. Huang, Z. et al. 2004. Suppression of microbunching instability in the linac coherent light source. Phys. Rev. ST Accel. Beams 7: 074401

    Article  ADS  Google Scholar 

  65. Huang, Z. et al. 2010. Measurements of the linac coherent light source laser heater and its impact on the X-ray free-electron laser performance. Phys. Rev. ST Accel. Beams 13: 020703

    Article  ADS  Google Scholar 

  66. Jacobsen, C. and J. Kirz. 1998. X-ray microscopy with synchrotron radiation. Nat. Struct. Biol. Suppl. 5: 650-653

    Article  Google Scholar 

  67. Jerby, E. and A. Gover. 1985. Investigation of the gain regimes and gain parameters of the free electron laser dispersion equation. IEEE J. Quantum Electron. QE-21: 1041-1058

    Article  ADS  Google Scholar 

  68. Katsouleas, T.C. et al. 2009. Scientific Assessment of high Power Free-electron Laser Technology, The National Academies Press, Washington D.C.

  69. Kim, K.-J. 1986a. An analysis of self-amplified spontaneous emission. Nucl. Instr. Meth. A 250: 396-403

    Article  ADS  Google Scholar 

  70. Kim, K.-J. 1986b. Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission in free-electron lasers. Phys. Rev. Lett. 57: 1871-1874

    Article  ADS  Google Scholar 

  71. Kim, K.-J. 1990. Note on RF Photo-Cathode Gun, in Proc. of a Workshop Prospects for a 1 Å Free-electron Laser, Sag Harbor, N.Y., Brookhaven National Laboratory Rep. 52273 122-135

  72. Kirkpatrick, D.A., G. Bekefi, A.C. Dirienzo, H.P. Freund and A.K. Ganguly. 1989. A high power, 600 m wavelength free electron laser. Nucl. Instr. Meth. A 285: 43-46

    Article  ADS  Google Scholar 

  73. Kondradenko, A.M. and E.L. Saldin. 1980. Generation of coherent radiation by a relativistic electron beam in an undulator. Part. Accel. 10: 207-216

    Google Scholar 

  74. Krinsky, S. and L.H. Yu. 1987. Output Power in guided modes for amplified Spontaneous Emission in a Single Pass Free-electron Laser. Phys. Rev. A 35: 3406-3423

    Article  ADS  Google Scholar 

  75. Kroll, N.M. and W.A. McMullin. 1978. Stimulated Emission from relativistic electrons passing through a spatially periodic transverse magnetic field. Phys. Rev. A 17: 300-308

    Article  ADS  Google Scholar 

  76. Kroll, N.M., P. Morton and M.N. Rosenbluth. 1981. Free-electron lasers with variable parameter Wigglers. IEEE J. Quantum Elec. QE-17: 1436-1468

    Article  ADS  Google Scholar 

  77. LCLS. 2002. LCLS Conceptual Design Report, Stanford Linear Accelerator Center, SLAC-R-593, http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-593.pdf

  78. Lefevre, A.K., J. Gardelle, G. Marchese, J.L. Rullier and J.T. Donohue. 1999. Self-amplified spontaneous emission and bunching at 3 GHz in a microwave free-electron laser. Phys. Rev. Lett. 82: 323-326

    Article  ADS  Google Scholar 

  79. Leone, S. et al. 1999. Report of the DOE Basic Energy Sciences Advisory Committee Panel on Novel Coherent Light Sources. http://www.science.doe.gov/bes/besac/reports.html

  80. Levy, D.H. et al. 1994. Free Electron Lasers and Other Advanced Sources of Light : Scientific Research Opportunities. National Research Council, National Academies Press, http://www.nap.edu/openbook.php?record_id=9182&page=1

  81. Lindberg, R.R. et al. 2009. Simulation Studies of the X-ray Free-electron Laser Oscillator. Proc. of the 2009 FEL Conf., Liverpool, pp. 587-590

  82. Liouville, J. 1838. Sur la théorie de la variation des constantes arbitraries. J. Math. Pures Appl. 3: 342-349

    Google Scholar 

  83. Madey, J.M.J. 1971. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42: 1906-1913

    Article  ADS  Google Scholar 

  84. McDonald, K.T. 1988. Design of the laser-driven RF electron gun for the BNL accelerator test facility. IEEE Trans. Electron Devices 35: 2052-2059

    Article  ADS  Google Scholar 

  85. Milton, S.V. et al. 2000. Observation of self-amplified spontaneous emission and exponential growth at 530 nm. Phys. Rev. Lett. 85: 988-991

    Article  ADS  Google Scholar 

  86. Milton, S.V. et al. 2001. Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser. Science 292: 2037-2040

    Article  ADS  Google Scholar 

  87. Moore, G.T. 1984. high-gain small-signal modes of the free-electron laser. Opt. Commun. 52: 46-51

    Article  ADS  Google Scholar 

  88. Moore, G.T. 1985. The high-gain regime of the free electron laser. Nucl. Instr. Meth. A 239: 19-28

    Article  ADS  Google Scholar 

  89. Motz, H. 1951. Applications of the radiation from fast electron beams. J. Appl. Phys. 22: 527-535

    Article  ADS  MATH  Google Scholar 

  90. Motz, H. 1953. Experiments on radiation by fast electron beams. J. Appl. Phys. 24: 826-833

    Article  ADS  Google Scholar 

  91. Murokh, A. et al. 2003. Properties of the ultrashort gain length, self-amplified spontaneous emission free-electron laser in the linear regime and saturation. Phys. Rev. E 67: 066501 (5p)

    Article  ADS  Google Scholar 

  92. Murphy, J.B. and C. Pellegrini. 1985a. Generation of high-intensity coherent radiation in the soft-X-ray and vacuum-ultraviolet region. J. Opt. Soc. Amer. B 2: 259-264

    Article  ADS  Google Scholar 

  93. Murphy, J.B. and C. Pellegrini. 1985b. Free electron lasers for the XUV spectral region. Nucl. Instr. Meth. A 237: 159-167

    Article  ADS  Google Scholar 

  94. Murphy, J.B., C. Pellegrini and R. Bonifacio. 1985c. Collective instability of a free electron laser including space charge and harmonics. Opt. Commun. 53: 197-202

    Article  ADS  Google Scholar 

  95. Murphy, J.B. and C. Pellegrini. 1990. Introduction to the physics of the free-electron laser, in : Laser Handbook, edited by W. Colson, C. Pellegrini and A. Renieri, Elsevier, Amsterdam, pp. 163-219

  96. Neal, R.B. (Ed.). 1967. The Stanford Two Mile Accelerator, W.A. Benjamin Inc., New York. The book has been digitized and can be found at http://www.slac.stanford.edu/library/2MileAccelerator/2mile.htm

  97. Nguyen, D.C. et al. 1998. Self-amplified spontaneous emission driven by a high-brightness electron beam. Phys. Rev. Lett. 81: 810-813

    Article  ADS  Google Scholar 

  98. Nuhn, H.-D. et al. 2009. LCLS undulator commissioning, alignment, performance. Proc. of the 2009 FEL Conf., Liverpool, pp. 714-721

  99. Orzechowski, T. et al. 1985. Microwave radiation from a high gain free-electron laser amplifier. Phys. Rev. Lett. 54: 889-892

    Article  ADS  Google Scholar 

  100. Palmer, R.V. 1972 Interaction of relativistic particles and free electromagnetic waves in the presence of a static helical magnet. J. Appl. Phys. 43: 3014-3023

    Article  MathSciNet  ADS  Google Scholar 

  101. Palmer, D.T. 1998. The Next Generation Photoinjector, Stanford University Ph.D. thesis, SLAC Report 500

  102. Palmer, D.T. et al. 1997. Emittance studies of the BNL/SLAC/UCLA 1.6 Cell Photocathode RF Gun. Proc. of the 1997 Particle Acc. Conf., Vancouver, pp. 2687-2689

  103. Pantell, R.H., G. Soncini and H.E. Puthoff. 1968. Stimulated photon-electron scattering. IEEE J. Quantum Electron. QE-4: 905-907

    Article  ADS  Google Scholar 

  104. Pellegrini, C. 1988. Progress Towards a Soft X-ray FEL. Nucl. Instr. Meth. A 272: 364-367

    Article  ADS  Google Scholar 

  105. Pellegrini, C. 1990. SASE and Development of an X-Ray FEL. Proc. of the Workshop Prospects for a 1 Å Free-electron Laser, Sag Harbor, N.Y. Brookhaven National Laboratory Rep. 52273, pp. 3-12

  106. Pellegrini, C. 1992. A 4 to 0.1 nm FEL Based on the SLAC Linac. Proc. Workshop IV Generation Light Sources, edited by M. Cornacchia and H. Winick, SSRL/SLAC Rep. 92/02, pp. 364-375

  107. Pellegrini, C. 2001.The Free-Electron Laser Collective Instability and the Development of X-Ray FELs. Proc. of the 2001 Particle Accelerator Conference, IEEE, Chicago, pp. 295–299

  108. Pellegrini, C. 2011. The Challenge of 4th Generation Light Sources. Proc. of the Int. Part. Acc. Conf., San Sebastian, pp. 3798-3802

  109. Pellegrini, C. and S. Reiche. 2004. The development of X-ray free-electron lasers. IEEE J. Sel. Top. Quantum Electron. 10: 1393-1404

    Article  Google Scholar 

  110. Pellegrini, C. et al. 1993. A 2 to 4 nm High Power FEL on the SLAC Linac. Nucl. Instr. Meth. A 331: 223-227

    Article  ADS  Google Scholar 

  111. Pellegrini, C. et al. 1994. The SLAC Soft X-Ray High Power FEL. Nucl. Instr. Meth. A 341: 326-330

    Article  ADS  Google Scholar 

  112. Philips, R.M. 1960. The Ubitron, a high-power traveling-wave tube based on a periodic beam interaction in unloaded waveguide. IRE Trans. Electron Devices 7: 231-241

    Article  ADS  Google Scholar 

  113. Pierce, J.R. 1962. History of the Microwave-Tube Art. Proc. of the IRE 50, pp. 978-984

  114. Prazeres, R., J.M. Ortega, F. Glotin, D.A. Jaroszynski and O. Marcouillé. 1997. Observation of self-amplified spontataneous emission in a mid-infrared free-electron laser. Phys. Rev. Lett. 78: 2124-2127

    Article  ADS  Google Scholar 

  115. Qiu, J., K. Batchelor, I. Ben-Zvi and X.-J. Wang. 1996. Demonstration of emittance compensation through the measurement of the Slice emittance at 10-ps electron Bunch. Phys. Rev. Lett. 76: 3723-3726

    Article  ADS  Google Scholar 

  116. Ratner, D. et al. 2009. FEL gain length and taper measurements at LCLS. Proceedings of 2009 FEL Conf., Liverpool, pp. 221-224

  117. Raubenheimer, T.O. 1995. Electron beam acceleration and compression for short wavelength FELs. Nucl. Instr. Meth. A 358: 40-43

    Article  ADS  Google Scholar 

  118. Reiche, S. 1999. Genesis 1.3 A Fully 3D Time Dependent FEL Simulation Code. Nucl. Instr. Meth. A 429: 243-248

    Article  ADS  Google Scholar 

  119. Reiche, S., P. Musumeci, C. Pellegrini and J. Rosenzweig. 2008. Developments of Ultra-Short Pulse Single Coherent Spike for SASE X-Ray FELs. Nucl. Instr. Meth. A 593: 45-48

    Article  ADS  Google Scholar 

  120. Reiche, S., C. Pellegrini, J. Rosenzweig, P. Emma and P. Krejcik. 2002. Start-to-end simulation for the LCLS X-ray FEL. Nucl. Instr. Meth. A 483: 70-74

    Article  ADS  Google Scholar 

  121. Robinson, K.W. 1985. Ultra Short Wave Generation. Nucl. Instr. Meth. A 239: 111-118

    Article  ADS  Google Scholar 

  122. Roentgen, W.C. 1895. Über eine neue Art von Strahlen. Sitzungsberichtes der Würzburger Physik-medic Gesellschaft

  123. Rosenzweig, J. et al. 2008. Generation of Ultra-short High Brightness Electron Beams for Single Spike SASE FEL Operation. Nucl. Instr. Meth. A 593: 39-44

    Article  ADS  Google Scholar 

  124. Rossbach, J. and the TESLA FEL Study Group. 1996. A VUV Free Electron Laser at the TESLA Test Facility at DESY. Nucl. Instr. Meth. A 375: 269-273

    Article  ADS  Google Scholar 

  125. Saldin, E.L., E.A. Schneidmiller and M.V. Yurkov. 1998. Statistical Properties of the Radiation from SASE-FEL Operating in the Linear Regime. Nucl. Instr. Meth. A 407: 291-295

    Article  Google Scholar 

  126. Saldin, E.L., E.A. Schneidermiller and M.V. Yurkov. 1999. Numerical simulations of the UCLA/LANL/RRCKI/SLAC experiment on a High Gain SASE FEL. Nucl. Instr. Meth. A 429: 197-201

    Article  ADS  Google Scholar 

  127. Saldin, E., E. Schneidmiller and M. Yurkov. 2002. Klystron instability of a relativistic electron beam in a bunch compressor. Nucl. Instr. Meth. A 490: 1-8

    Article  ADS  Google Scholar 

  128. Saldin, E., E. Schneidmiller and M. Yurkov. 2003. Longitudinal Space Charge Driven Microbunching Instability in TTF2 linac. Report TESLA-FEL-2003-02 Rep., DESY, pp. 1-13

  129. Scharlemann, E.T., A.M. Sessler and J.S. Wurtele. 1985. Optical guiding in a free-electron laser. Phys. Rev. Lett. 54: 1925-1928

    Article  ADS  Google Scholar 

  130. Schmerge, J.F. et al. 1999. Photocathode rf gun emittance measurements using variable length laser pulses. Workshop on Free-Electron Laser Challenges II, Harold E. Bennett; David H. Dowell (Eds.), SPIE Conf. Proc. 3614 : 22-32

  131. Schneider, J.R. 2010. Photon Science at Accelerator-based Light Sources. Rev. Accel. Sci. Tech. 3: 13-37

    Article  Google Scholar 

  132. Seeman, J. et al. 1991a. Summary of Emttance control in the SLC Linac. Proc. of 1991 U.S. Particle Accelerator Conf., pp. 2064-2067

  133. Seeman, J. et al. 1991b. Multibunch energy and spectrum control in the SLC high energy Linac. Proc. of 1991 U.S. Particle Accelerator Conf., pp. 3210-3213

  134. Seibert, M.M. et al. 2011. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470: 78-82

    Article  ADS  Google Scholar 

  135. Sprangle, P. and R.A. Smith. 1980. Theory of free-electron lasers. Phys. Rev. A 21: 293-301

    Article  ADS  Google Scholar 

  136. Sprangle, P., C.M. Tang and C.W. Roberson. 1985. Collective effects in the free electron Laser. Nucl. Instr. Meth. A 239: 1-18

    Article  ADS  Google Scholar 

  137. Stupakov, G. 2003. Theory and observations of microbunching instability in electron machines. Proc. of the 2003 Particle Acc. Conf., Portland, Oregon, pp. 102-106

  138. Tanaka, H. et al. 2011. SACLA Project-Status of beam commissioning. Proc. of 2011 FEL Conf., Shanghai

  139. TESLA. 1995. A VUV free electron laser at the TESLA test facility at DESY. Conceptual Design Report, DESY Print, TESLA-FEL 95-03

  140. Travish, G. et al. 1995. Parametric Studies of an X-ray FEL. Nucl. Instr. Meth. A 358: 60-63

    Article  ADS  Google Scholar 

  141. Tremaine, A. et al. 1998. Observation of self-amplified spontaneous-emission-induced electron-beam microbunching using coherent transition radiation. Phys. Rev. Lett. 81: 5816-5819

    Article  ADS  Google Scholar 

  142. Tremaine, A. et al. 2001. Saturation measurement of a visible SASE FEL. Proc. of the 2001 Particle Accelerator Conf., Chicago, pp. 2760-2762

  143. Tremaine, A. et al. 2002a. experimental characterization of nonlinear harmonic radiation from a visible self-amplified spontaneous emission free-electron laser at saturation. Phys. Rev. Lett. 88: 204801

    Article  ADS  Google Scholar 

  144. Tremaine, A. et al. 2002b. Fundamental and harmonic microbunching in a high-gain self-amplified spontaneous-emission free-electron laser. Phys. Rev. E 66: 03650341

    Article  Google Scholar 

  145. Varfolomee, A.A. et al. 1995. Development of focusing undulators on the basis of Side Magnet Arrays. Nucl. Instr. Meth. A 359: 85-88

    Article  ADS  Google Scholar 

  146. Varian, R.H. and S.F. Varian. 1939 A High frequency oscillator and amplifier. J. Appl. Phys. 10: 321-327

    Article  ADS  Google Scholar 

  147. Vasserman, I. et al. 2004. LCLS undulator design development. Proc. of the 2004 FEL Conf., pp. 367-370

  148. Vinko, S.M. et al. 2011. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laser. Nature 482: 59-62

    Article  ADS  Google Scholar 

  149. Walker, R.P. 2008. Considerations for a New Light Source for the UK. Proc. of 2008 FEL Conf., Gyeongju, pp. 160-162

  150. Wang, J.-M. and L.-H. Yu. 1986. A transient analysis of a bunched beam free electron Laser. Nucl. Instr. Meth. A 250: 484-489

    Article  ADS  Google Scholar 

  151. Weizsäcker, C.F. 1934. Ausstrahlung bei Stössen sehr schneller Elektronen. Z. Phys. 88: 612-625

    Article  ADS  Google Scholar 

  152. Williams, E.J. 1935 Correlation of certain collision problems with radiation theory. Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 13

  153. Winick, H. et al. 1994. Short wavelength FELs using the SLAC Linac. Nucl. Instr. Meth. A 347: 199-205

    Article  ADS  Google Scholar 

  154. Young, L. et al. 2010. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466: 46-52

    Article  ADS  Google Scholar 

  155. Yu, L.H. 1991. Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 44: 5178-5193

    Article  ADS  Google Scholar 

  156. Yu, L.-H., S. Krinsky and R. Gluckstern. 1990. Calculation of Universal Scaling for Free-electron Laser Gain. Phys. Rev. Lett. 64: 3011-3014

    Article  ADS  Google Scholar 

  157. Yu, L.-H. et al. 2000a. First lasing of a high-gain harmonic generation free-electron laser experiment. Nucl. Instr. Meth. A 445: 301-306

    Article  ADS  Google Scholar 

  158. Yu, L.-H. et al. 2000b. High-Gain Harmonic-Generation Free-electron Laser. Science 289: 932-934

    Article  ADS  Google Scholar 

  159. Yu, L.H. et al. 2003. First Ultraviolet High-Gain Harmonic-Generation Free-Electron Laser. Phys. Rev. Lett. 91: 074801(4p)

    Article  ADS  Google Scholar 

  160. Zinth, W., A. Laubereau and W. Kaiser. 2011 The long journey to the laser and its rapid development after 1960. Eur. Phys. J. H 36: 153-181

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pellegrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellegrini, C. The history of X-ray free-electron lasers. EPJ H 37, 659–708 (2012). https://doi.org/10.1140/epjh/e2012-20064-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2012-20064-5

Keywords

Navigation