Skip to main content
Log in

History of solar oblateness measurements and interpretation

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

The story of the solar oblateness begins in the pre-relativity days when an explanation of the observed advance of Mercury’s perihelion was searched for. Then, examination of historical records during the first decade of the twentieth century shows clearly a strong effort to measure the solar shape. Results show discrepancies, due on one hand, to the fact that physical statements in the solar case are still pending (for example does the solar core rotate rapidly? Is the Sun an oblique rotator? How does the magnetic field distort the outer shape?) and on the other hand, due to the difficulty in measuring a faint quantity, even when using the cutting edge of up-to-date techniques. We provide a new perspective on the controversy which followed measurements made in Princeton (USA) in the mid-1960s, highlighting the possibility to advocate alternative theories of gravitation. Since then, the accurate shape of the Sun has been actively debated, and so far, only satellite experiments seem to achieve the required sensitivity to measure the expected faint deviations to sphericity. In a close cooperation between experiments and theory, we point out how false ideas or inexact past measurements may contribute to the advancement of new physical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afanaseva, T.I., M.D. Kislik, F. Kolyuka Yu and V.F. Tikhonov. 1990. Experimental determination of the Sun’s oblateness. Astron. J. 67: 6, 1326–1328

    ADS  Google Scholar 

  • Ajabshirizadeh, A., J.P. Rozelot and Z. Fazel. 2008. Contribution of the solar magnetic field on gravitational moments. Scientia Iranica 15: 144–149

    MATH  Google Scholar 

  • Ambronn, L. 1906. Remarks on Mr. C.L. Poor’s Papers on the Figure of the Sun. Astrophys. J. 23: 343–344

    Article  ADS  Google Scholar 

  • Ambronn, L. and A.C.W. Schur. 1905. Die Messungen des Sonnendurchmessers an dem Repsold’schen 6-zoelligen Heliometer der Sternwarte zu Goettinge ausgefuhrt. Astronomische Mittheilungen der Koeniglichen Sternwarte zu Goettingen, Part 7. T.: Druck der Dieterich’schen Univ.-Buchdruckerei (W. Fr., 126 p.)

  • Antia, H.M., S.M. Chitre and D.O. Gough. 2008. Temporal variations in the Sun’s rotational kinetic energy. Astron. Astrophys. 477: 657–663

    Article  MATH  ADS  Google Scholar 

  • Armstrong, J. and J.R. Kuhn. 1999. Interpreting the Solar Limb Shape Distortions. Astrophys. J. 525: 533

    Article  ADS  Google Scholar 

  • Auwers, A. 1891. Die Sonnenparallaxe nach den Heliometer-Beobachtungen der deutschen Venus-Expeditionen von 1874 und 1882. Astron. Nachr. 128: 329

    Article  ADS  Google Scholar 

  • Bauschinger, J. (Von). 1884. Zur Frage über die Bewegung des Mercurperihels. Astron. Nachr. 109: 27–32

    Article  ADS  Google Scholar 

  • Bearsley, B.J. 1987. The Visual Shape and multipolar moments of the Sun. Ph.D. Thesis, University of Arizona (USA), 116 p.

  • Bois, E. and J.-F. Girard. 1999. Impact of the Quadrupole Moment of the Sun on the Dynamics of the Earth-Moon System. Cel. Mech. 73: 329–338

    Article  MATH  ADS  Google Scholar 

  • Böhme, S. 1970. Zumm Einfluss eines Quadrupolmoments der Sonne auf die Bahnlage der planeten. Astron. Nachr. 292: 35–36

    Article  ADS  Google Scholar 

  • Brans, C. and R.H. Dicke. 1961. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124: 925–935

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Bruns, H. 1878. Die Figur der Erde, edited by P. Stankiewicz, Berlin

  • Burša, M. 1986. The Sun’s flattening and its influence on planetary orbits. Bull. Astron. Inst. Czechosl. 37: 312–313

    ADS  Google Scholar 

  • Bush, R.I., M. Emilio and J.R. Kuhn. 2010. On the Constancy of the Solar Radius. III. Astrophys. J. 716: 1381-1385

    Article  ADS  Google Scholar 

  • Campbell, L. and J.W. Moffat. 1983. Quadrupole moment of the Sun and the planetary orbits. Astrophys. J. Lett. 275: L77-L79

    Article  ADS  Google Scholar 

  • Chandrasekhar, S. 1933. The equilibrium of distorted polytropes. Mont. Nont. Roy. Astr. 93: 390–406

    ADS  Google Scholar 

  • Chaplin, W.J. and S. Basu. 2008. Perspectives in Global Helioseismology and the Road Ahead. Sol. Phys. 251, 53–75

    Article  ADS  Google Scholar 

  • Chapman, G.A. 1972. Photospheric faculae and the solar oblateness: a reply to Faculae and the solar oblateness, by R.H. Dicke. Astrophys. J. 183: 1005–1023

    Article  ADS  Google Scholar 

  • Chapman, G.A. and A.P. Ingersoll. 1973. Photospheric faculae and the solar oblateness. Astrophys. J. 175: 819–829

    Article  ADS  Google Scholar 

  • Chevalier, P.S. 1912. Note sur les diamètres polaire et équatorial du Soleil. Bull. Astron. 29: 473–475

    Google Scholar 

  • Clairaut, A.C. 1743. Théorie de la Figure de la Terre, Tirée de l’Hydrostatique. David Fils, Paris, 2nd edn. parue en 1808 chez Courcier, Paris

  • Cocke, W.J. 1967. Alternative Cause of the Solar Oblateness. Phys. Rev. Lett. 19: 609–611

    Article  ADS  Google Scholar 

  • Damiani-Badache, C., J.P. Rozelot, K. Coughlin and N. Kilifarska. 2007. Influence of the UTLS region on the astrolabes solar signal measurement. Mont. Nont. Roy. Astr. 380: 609–614

    Article  ADS  Google Scholar 

  • Damiani, C., J.P. Rozelot and S. Pireaux. 2009a. Probing the solar surface: the oblateness and astrophysical consequences. Astrophys. J. 703: 1791-1796

    Article  ADS  Google Scholar 

  • Damiani, C., B. Tayoglu and J.P. Rozelot. 2009b. From solar to stellar oblateness. SF2A, Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, held 29 June–4 July 2009 in Besançon, France, edited by M. Heydari-Malayeri, C. Reylé and R. Samadi, p. 259

  • Damiani, C., J.P. Rozelot, S. Lefebvre, A. Kilcik and A.K. Kosovichev. 2010. A brief history of the solar oblateness. A review. J. Atmosph. Sol. Terrestr. Phys. 73: 241-250

    Article  ADS  Google Scholar 

  • Deslandes, H. 1995. Héliomètre à balayage : validation complète de la chaîne de données. DEA de l’Université Paris VI, 102 p.

  • Dicke, R.H. 1970. The solar oblateness and the gravitational quadrupole moment. Astrophys. J. 159: 1-23

    Article  ADS  Google Scholar 

  • Dicke, R.H. 1972. Faculae and the Solar Oblateness. Astrophys. J. 175: 831

    Article  ADS  Google Scholar 

  • Dicke, R.H. 1973. Solar Oblateness and Equatorial Brightening. Astrophys. J. 180: 293–306

    Article  ADS  Google Scholar 

  • Dicke, R.H. 1974. The Oblateness of the Sun. Astrophys. J. Supp. Ser. 27: 131

    Article  ADS  Google Scholar 

  • Dicke, R.H. 1976. New solar rotational period, the solar oblateness and solar faculae. Phys. Rev. Lett. 37: 1240–1242

    Article  ADS  Google Scholar 

  • Dicke, R.H. 1982. A magnetic core in the Sun – The solar rotator. Sol. Phys. 78: 3–16

    Article  ADS  Google Scholar 

  • Dicke, R.H. and H.M. Goldenberg. 1967. Solar oblateness and General Relativity. Phys. Rev. Lett. 18: 313–316

    Article  ADS  Google Scholar 

  • Dicke, R.H., J.R. Kuhn and K.G. Libbrecht. 1983. Oblateness of the Sun in 1983 and relativity. Nature 316: 687–690

    Article  ADS  Google Scholar 

  • Dicke, R.H., J.R. Kuhn and K.G. Libbrecht. 1985. Facular influences on the apparent solar shape. Nature 304: 326–328

    Article  ADS  Google Scholar 

  • Dicke, R.H., J.R. Kuhn and K.G. Libbrecht. 1986. The variable oblateness of the Sun – Measurements of 1984. Appl. J. 311: 1025–1030

    Google Scholar 

  • Dicke, R.H., J.R. Kuhn and K.G. Libbrecht. 1987. Is the solar oblateness variable? Measurements of 1985. Astrophys. J. 318: 451–458

    Article  ADS  Google Scholar 

  • Djafer, D., S. Sofia, A. Egidi and G. Thuillier. 2008. Processing Method Effects on Solar Diameter Measurements: Use of Data gathered by the Solar Disk Sextant. Sol. Phys. 247: 225–248

    Article  ADS  Google Scholar 

  • Durney, B. and I.W. Roxburgh. 1969. Inhomogeneous Convection and the Equatorial Acceleration of the Sun. Sol. Phys. 16: 3–20

    Article  ADS  Google Scholar 

  • Durney, B.R. and N.E. Werner. 1971. On the solar oblateness: The combined effect of a pole-equator difference in effective temperature and mechanical heating. Sol. Phys. 21: 21-26

    Article  ADS  Google Scholar 

  • Duvall, T.L., W.A. Dziembowski, P.R. Goode, D.O. Gough, J.W. Harvey and J.W. Leibacher. 1984. Internal rotation of the Sun. Nature 310: 22

    Article  ADS  Google Scholar 

  • Egidi, A., B. Caccin, S. Sofia, W. Heaps, W. Hoegy and L. Twigg. 2006. High-Precision Measurements of the Solar Diameter and Oblateness by the Solar Disk Sextant (SDS) Experiment. Sol. Phys. 235: 407-418

    Article  ADS  Google Scholar 

  • Emilio, M. 1997. Analysis of the Sun’s observations with prismatic astrolabe and Solar Diameter Latitude Dependence. MsC. Thesis, Instituto Astronomico e Geofisico, Universidade de São Paulo (Brazil)

  • Emilio, M. and N.V. Leister. 2005. Solar diameter measurements at São Paulo Observatory, Mon. Not. R. Astron. Soc. 361: 1005–1011

    Google Scholar 

  • Emilio, M., R.I. Bush, J. Kuhn and P. Sherrer. 2007. A Changing Solar Shape. Astrophys. J. 660: L161-L163

    Article  ADS  Google Scholar 

  • Emilio, M., J. Kuhn, R.I. Bush and P. Sherrer. 2000. On the constancy of the solar diameter. Astrophys. J. 543: 1007–1010

    Article  ADS  Google Scholar 

  • Einstein, A. 1916. Die Grundlage der allgemeinen Relativitätstheorie (The Foundation of the General Theory of Relativity). Annalen der Physik 354: 769–822

    Article  ADS  Google Scholar 

  • Fienga, A. 2010. Gravitation and Fundamental Physics in Space. GPhyS Colloquium, Paris, 22–24 June 2010, http://gphys.obspm.fr/Paris2010/Home.html

  • Fivian, M.D., H.S. Hudson, R.P. Lin and H.J. Zahid. 2008. Solar Shape Measurements from RHESSI: A Large Excess Oblateness. Science 322: 560–562

    Article  ADS  Google Scholar 

  • Gialanella L. 1941. Le Variazioni del diametro solare nel sessanteno 1874–1937, secondo le osservazioni eseguite neel’osservatorio del Campidoglio. Memoria presentata dall’Academico Pontificio Guiseppe Armellini nella Tornata del 30 novembre 1941. Commentationes, Vol. VI: No. 25, pp. 1139–1197

  • Giannuzi, M.A. 1953. Riduzione delle osservazioni dei diametro solari orizzontali (1851 al 1937). Mem. Soc. Astron. Ital. 305–314

  • Giannuzi, M.A. 1955. Riduzione delle osservazioni dei diametro solari verticali (1851 al 1937). Mem. Soc. Astron. Ital. 447-454

  • Gilvarry, J.J., and P.A. Sturrock. 1967. Solar Oblateness and the Perihelion Advances of Planets. Nature 216: 1283–1285

    Article  ADS  Google Scholar 

  • Goldreich, P. and G. Schubert. 1967. Rotation of the Sun. Science 156: 1101-1102

    Article  ADS  Google Scholar 

  • Goldreich, P. and G. Schubert. 1968. A Theoretical Upper Bound to the Solar Oblateness. Astrophys. J. 154: 1005

    Article  ADS  Google Scholar 

  • Gough, D.O. 1982. Internal rotation and gravitational quadrupole moment of the Sun. Nature 298: 334–339

    Article  ADS  Google Scholar 

  • Goupil, M.J. 2009. The rotation of Sun and Stars, edited by J.P. Rozelot and C. Neiner, Lecture Notes in Physics, Vol. 765. Springer, Berlin, 260 p.

  • Hamy, M. 1889. Étude sur la figure des corps célestes. Annales de l’Observatoire de Paris. Mémoires, t. 19, Paris, edited by Gauthier-Villars et fils, pp. 1–54

  • Harzer, P. 1891. Uber die Rotations bewegung der Sonne. Astron. Narchr. 127: 17

    Article  ADS  Google Scholar 

  • Hayn, F. 1924. Die Gestalt der Sonne. Astron. Nachr. 220: 113

    Article  ADS  Google Scholar 

  • Hill, H.A. 1986. SCLERA, Monograph Series in Astrophysics, N° 4

  • Hill, H.A., P.D. Clayton, D.L. Patz, A.W. Healy, R.T. Stebbins, J.R. Oleson and C.A. Zanoni. 1974. Solar Oblateness, Excess Brightness, and Relativity. Phys. Rev. Lett. 33: 1497–1500, and errata: (1975-c) Phys. Rev. Lett. 34: 296

    Article  ADS  Google Scholar 

  • Hill, H.A. and R.T. Stebbins. 1975a. The intrinsic visual oblateness of the Sun. Astrophys. J. 200: 471–483

    Article  ADS  Google Scholar 

  • Hill, H.A., R.T. Stebbins and J.R. Oleson. 1975b. The Finite Fourier Transform Definition of an edge of the solar disk. Astrophys. J. 200: 484–498

    Article  ADS  Google Scholar 

  • Hill, H.A., G.R. Rabaey and R.D. Rosenwald. 1986. Relativity in Celestial Mechanics and Astrometry. IAU Symp., 114, edited by J. Kowalevsky and V.A. Brumberg, Reidel Pub., 345

  • Howard, L.N. 1967. Solar Spin-down Problem. Nature 214: 1297–1299

    Article  ADS  Google Scholar 

  • Howe, R. 2009. Solar Interior Rotation and its Variation, in Living Reviews in Solar Physics (Vol. 6, No. 1). http://www.livingreviews.org/lrsp-2009–1

  • Hudson, H. and J.P. Rozelot. 2010. History of solar oblateness. http://sprg.ssl.berkeley.edu/~tohban/wiki/index.php/History_of_Solar_oblateness

  • Ingersoll, A.P. and E.A. Spiegel. 1971. Temperature Variation and the Solar Oblateness. Astrophys. J. 163: 375–382

    Article  ADS  Google Scholar 

  • Ioro, L. 2005. On the possibility of measuring the solar oblateness and some relativistic effects from planetary ranging. Astron. Astrophys. 433: 385–393

    Article  ADS  Google Scholar 

  • Isaak, G.R. 1982. Solar core rotation. Nature 299: 704–707

    Article  ADS  Google Scholar 

  • Isaak, G.R. 2000. Proc. 9th Meeting on Solar Physics, Magnetic Fields and Solar Processes, Florence, Italy, 12–18 September 1999 (ESA SP-448, December 1999), 1–5

  • Kislik, M.D. 1983. On the solar oblateness. Sov. Astron. Lett. 9: 5–7

    Google Scholar 

  • Komm, R.W., R.F. Howard and J.W. Harvey. 1993. Rotation rates of small magnetic features from two- and one-dimensional cross-correlation analyses. Sol. Phys. 145: 1-10

    Article  ADS  Google Scholar 

  • Kuhn, J.R., K.G. Libbrecht and R.H. Dicke. 1984. Observations of a Solar Latitude Dependent Photospheric Brightness Variation. Bull. Am. Astron. Soc. 16: 451

    ADS  Google Scholar 

  • Kuhn, J.R., K.G. Libbrecht and R.H. Dicke. 1998. The surface temperature of the Sun and changes in the solar constant. Science 242: 908–911

    ADS  Google Scholar 

  • Kuhn, J.R., R.I. Bush, M. Emilio and P.H. Scherrer. 2004. On the Constancy of the Solar Diameter. II. Astrophys. J. 613: 1241-1252

    Article  ADS  Google Scholar 

  • Laclare, F. 1983. Astrolabe measurements of the solar diameter. Astron. Astrophys. 125: 200–203

    ADS  Google Scholar 

  • Laclare, F., C. Delmas and A. Irbah. 1999. Variations apparentes du diamètre solaire obervées à l’astrolabe solaire, 1975–1998. C. R. Acad. Sci. Paris 327: II, pp. 1107–114

    Google Scholar 

  • Landgraf, W. 1992. An estimation of the oblateness of the Sun from the motion of Icarus. Sol. Phys. 142: 403–406

    Article  ADS  Google Scholar 

  • Ledoux, P. 1945. On the Radial Pulsation of Gaseous Stars. Astrophys. J. 102: 143

    Article  ADS  MathSciNet  Google Scholar 

  • Lefebvre, S. and A.K. Kosovichev. 2005. Changes in the subsurface stratification of the sun with the 11-year activity cycle. Astrophys. J. 633: L149-L152

    Article  ADS  Google Scholar 

  • Lefebvre, S. and J.P. Rozelot. 2004. Solar latitudinal distortions: from theory to observations. A&A 419: 1133–1140

    Article  ADS  Google Scholar 

  • Lefebvre, S., A. Kosovichev and J.P. Rozelot. 2007. Test of nonhomologous solar radius changes with the 11 year activity cycle. Appl. J. 658: L135-L138

    ADS  Google Scholar 

  • Lefebvre, S., J.P. Rozelot, S. Pireaux, A. Ajabshirizadeh and Z. Fazel. 2005. Global properties of Sun and stars: what can we learn from irradiance and shape? Mem. Soc. Astron. Ital. 76: 994–996

    ADS  Google Scholar 

  • Li, L.H., P. Ventura, S. Basu, S. Sofia and P. Demarque. 2005. 2-D Stellar Evolution Code Including Arbitrary Magnetic Fields. Appl. J. S. 164: 215–254

    Article  ADS  Google Scholar 

  • Libbrecht, K.G. 1986. The shape of the Sun. Ph.D. Thesis, Princeton University (USA), 132 p.

  • Lieske, J.H. and G.W. Null. 1969. Icarus and the Determination of Astronomical Constants. Astrophys. J. 74: 297–307

    ADS  Google Scholar 

  • Lydon, T.J. and S. Sofia. 1996. A Measurement of the Shape of the Solar Disk: The Solar Quadrupole Moment, the Solar Octopole Moment, and the Advance of Perihelion of the Planet Mercury. Phys. Rev. Lett. 76: 177–179

    Article  ADS  Google Scholar 

  • Maeder, A. 1999. Stellar evolution with rotation IV: von Zeipel’s theorem and anisotropic losses of mass and angular momentum. Astron. Astrophys. 347: 186

    Google Scholar 

  • Maier, E., L. Twigg and S. Sofia. 1992. Preliminary results of a balloon flight of the solar disk sextant. Astrophys. J. 389: 447-452

    Article  ADS  Google Scholar 

  • Meyermann, B. 1950. Zur Pulsation der Sonne. Astron. Nachr. 279: 45–46

    Article  ADS  Google Scholar 

  • Modolensky, M.S. 1988. Dependence of the gravitational field of the Earth on the changes of its velocity of rotation. Geodezyya i Kartogrtaphiaya 5: 11-13

    Google Scholar 

  • Milne, E.A. 1923. The equilibrium of a rotating star. Mon. Not. R. Astron. Soc. 83: 118–147

    ADS  Google Scholar 

  • Newcomb, S. 1895. Fundamental Constants of Astronomy, US Government Print Office, Washington, DC, p. 111

  • Noël, F. 2003. Solar astrometry at Santiago, in The Sun’s surface and subsurface, edited J.P. Rozelot, Lecture Notes in Physics, Springer (D) 599, pp. 181-195

  • Paternó, L., S. Sofia and M.P. DiMauro. 1996. The rotation of the Sun’s core. Astron. Astrophys. 314: 940–946

    ADS  Google Scholar 

  • Pijpers, F.P. 1998. The solar gravitational quadrupole. Mon. Not. R. Astron. Soc. 297: L76-L80

    Article  ADS  Google Scholar 

  • Pireaux, S. and J.P. Rozelot. 2003. Solar Quadrupole moment and purely Relativistic Gravitation Contributions To Mercury’s Perihelion Advance. Astrophys. Space Sci. 284: 1159–1194

    Article  ADS  Google Scholar 

  • Pitjeva, E.V. 2005. Relativistic Effects and Solar Oblateness from Radar Observations of Planets and Spacecraft. Astron. Lett. 31: 340–349

    Article  ADS  Google Scholar 

  • Poor, C.L. 1905a, The Figure of the Sun. Astrophys. J. 22: 103

    Article  ADS  Google Scholar 

  • Poor, C.L. 1905b, The Figure of the Sun II. Astrophys. J. 22: 305

    Article  ADS  Google Scholar 

  • Reis Neto, E., A.H. Andrei, J.L. Penna, E.G. Jilinski and S.P. Puliaev. 2003. Observed Variations of the Solar Diameter in 1998/2000. Sol. Phys. 212: 7–21

    Article  ADS  Google Scholar 

  • Richman, S. 1996. Resolving discordant results: modern solar oblateness experiments. Stud. Hist. Philos. Mod. Phys. 27: 1-22

    Article  Google Scholar 

  • Rösch, J. 1985. The basic equations for scanning heliometer measurement of solar diameters. Sol. Phys. 96: 213–217

    Article  Google Scholar 

  • Rösch, J. and J.P. Rozelot. 1996. Le Soleil change-t-il de forme ? C. R. Acad. Sci. Paris 322: 637–644

    Google Scholar 

  • Roseveare, N.T. 1982. Mercury’s perihelion from Le Verrier to Einstein. Oxford University Press, UK, 201 p.

  • Roxburgh, I.W. 1967a. Implications of the Oblateness of the Sun. Nature 213: 1077–1078

    Article  ADS  Google Scholar 

  • Roxburgh, I.W. 1967b. Solar Oblateness. Nature 216: 1286

    Article  ADS  Google Scholar 

  • Roxburgh, I.W. 2001. Gravitational multipole moments of the Sun determined from helioseismic estimates of the internal structure and rotation. Astron. Astrophys. 377: 688–690

    Article  ADS  Google Scholar 

  • Rozelot, J.P. and E. Bois. 1997. New results concerning the solar oblateness and consequences on the solar interior, 18th NSO Workshop, Sacramento Peak, USA, edited by Balasubramaniam, in Conf. Pacif. Astro. Soc. 140: 75–82

  • Rozelot, J.P., C. Damiani and S. Lefebvre. 2009. Variability of the solar shape (before space dedicated missions). J. Atmos. Sol.-Terr. Phys. 71: 1683–1694

    Article  Google Scholar 

  • Sadřakov, S., and M. Dačić. 1988. Results of diurnal measurements for the Sun, Mercury, Venus and Mars obtained in the period 1984–1986. Bull. Obs. Astron. Belgr. 138: 78-84

    ADS  Google Scholar 

  • Schatten, K.H. 1975. Why the Sun may appear oblate. Astrophys. Space. Sci. 34: 467-480

    Article  ADS  Google Scholar 

  • Schatten, K.H. and S. Sofia. 1983. Facular influences on the apparent solar shape. Nature 301: 133–134

    Article  ADS  Google Scholar 

  • Schatzman, E. 1962. A theory of the role of magnetic activity during star formation. Annales d’Astrophysique 25: 18

    ADS  Google Scholar 

  • Schou, J., H.M. Antia, S. Basu et al. 2008. Helioseismic studies of differential rotation in the solar enveloppe by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505: 390–417

    Article  ADS  Google Scholar 

  • Shapiro, I. 1999. A century of relativity. Rev. Modern Phys. 71: 41–53

    Article  ADS  Google Scholar 

  • Sofia, S., S. Basu, P. Demarque, L. Li and G. Thuillier. 2005. The nonhomologous nature of Solar Diameter Variations. Astrophys. J. 632: L147-L150

    Article  ADS  Google Scholar 

  • Sturrock, P.A. 2009. Combined Analysis of Solar Neutrino and Solar Irradiance Data: Further Evidence for Variability of the Solar Neutrino Flux and Its Implications Concerning the Solar Core. Sol. Phys. 254: 227–239

    Article  ADS  Google Scholar 

  • Sturrock, P.A. and L. Bertello. 2010. Power Spectrum Analysis of Mount Wilson Solar Diameter Measurements: Evidence for Solar Internal r-mode Oscillations. Astrophys. J. 725: 492–495

    Article  ADS  Google Scholar 

  • Sturrock, P.A. and J.J. Gilvarry. 1967, Solar Oblateness and Magnetic Field. Nature 216: 1280–1283

    Article  ADS  Google Scholar 

  • Thushari, E.P.B.A., R. Nakamura, M. Hashimoto and K. Arai. 2010. Brans-Dicke model constrained from the Big Bang nucleosynthesis and magnitude redshift relations of supernovae. Astron. Astrophys. 521: A52

    Article  ADS  Google Scholar 

  • Tsuneta, S. and Y. Shiozu. 2009. IIIrd Space Climate Conference, F. Ivalo (to be published)

  • Turck-Chièze, S. 2009a. The rotation of the solar core, in The rotation of Sun and Stars, Springer, edited by J.P. Rozelot and C. Neiner, Lecture Notes in Physics 765, 123

  • Turck-Chièze, S. et al. 2009b. The DynaMICCS perspective (A mission for a complete and continuous view of the Sun dedicated to magnetism, space weather and space climate), Exp. Astron. (Special Issue on ESA’s Cosmic Vision) 23: 1017–1055

    Article  ADS  Google Scholar 

  • Turck-Chièze, S. et al. 2010. Seismic and Dynamical Solar Models. I. The Impact of the Solar Rotation History on Neutrinos and Seismic Indicators. Astrophys. J. 715: 1539–1555

    Article  ADS  Google Scholar 

  • Turyshev, S.G., J.D. Anderson and R.W. Hellings. 1996. relativistic gravity theory and relataed tests with a Mercury orbiter mission. arXiv:gr-qc/9606028 (June 13), 36 p.

  • Turyshev, S.G., M. Shao, K.L. Nordtvedt, H. Dittus, C. Laemmerzahl, S. Theil, C. Salomon, S. Reynaud, T. Damour, U. Johann, P. Bouyer, P. Touboul, B. Foulon, O. Bertolami and J. Páramos. 2009. Advancing fundamental physics with the Laser Astrometric Test of Relativity. Exp. Astron. 27: 27–60

    Article  ADS  Google Scholar 

  • Ulrich, R.K. and G.W. Hawkins. 1981. Astrophys. J. 246: 985 (and erratum, 1981b, Astrophys. J. 249 831)

  • Will, C.M. 1998. The confrontation between general relativity and experiment: a 1998 update. arXiv:gr-qc/9811036 (November 11), 66 p.

  • Will, C.M. 2006. The Confrontation between General Relativity and Experiment: A Centenary Perspective. Progress of Theoretical Physics Supplement 163: 146–162

    Article  ADS  MathSciNet  Google Scholar 

  • Wright, T. 1750. An original theory or new Hypothesis of the Universe. Mac Donald, London and American Elsevier Inc. New York, 117

  • Xu, Y., Y. Yang, Q. Zhang and G. Guochang Xu. 2011. Solar Oblateness and Mercurys Perihelion Precession. Mont. Not. Roy. Astron. Soc., in press

  • Yuan, D.N., C.F. Yoder, A.S. Konopliv, E.M. Standish and W.M. Folkner. 2002. The Size of Mars’ Fluid Core From Mars k2 Love Number Obtained From Analysis of MGS Doppler Tracking. AGU, 1227 Planetary geodesy and gravity (5420, 5714, 6019). Bibliographic Code 2002AGUFM.P62A0369Y

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. -P. Rozelot or C. Damiani.

Additional information

This paper is devoted to the memory of Jean Rösch (18 January 1915–22 January 1999) who since the 60’s at the Pic du Midi observatory (France) developed a new apparatus to routinely measure solar oblateness and to check the Dicke’s ideas on alternative theories on gravitation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozelot, J.P., Damiani, C. History of solar oblateness measurements and interpretation. EPJ H 36, 407–436 (2011). https://doi.org/10.1140/epjh/e2011-20017-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2011-20017-4

Keywords

Navigation