Skip to main content
Log in

The long journey to the laser and its rapid development after 1960

The European Physical Journal H Aims and scope Submit manuscript

Abstract

The laser, a fascinating new light source with numerous applications in our daily life was first realized some 50 years ago. The principle was initiated in 1916 when Einstein introduced a new concept of radiation-matter-interaction known today as stimulated emission of electromagnetic radiation. It took nearly 40 years before a first practical device based on stimulated emission – the maser – was realized for microwaves in 1954. In 1960, the first laser was operated in the visible. This historical note reports on the way to the laser with its climax in 1960. The subsequent explosive development of new lasers and of fundamental applications is shortly reviewed in the second part of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Akhmanov, S.A. and R.V. Khoklov. 1962. Concerning one Possibility of Amplification of light Waves. Sov. Phys. JETP 16: 252-254

    ADS  Google Scholar 

  2. Akhmanov, S.A., A.I. Kovrigin, A.S. Piskarskas, V.V. Fadeev and R.V. Khokhlov. 1965. Observation of Parametric Amplification in Optical Range. JETP Lett. 2: 192-196

    ADS  Google Scholar 

  3. Alsop, L.E., J.A. Giordmaine, C.H. Mayer and C.H. Townes. 1958. Observations Using a Maser Radiometer at 3 cm Wavelength. Astron. J. 63: 301-301

    Article  ADS  Google Scholar 

  4. Armstrong, J.A. 1967. Measurement of Picosecond Laser Pulse Widths. Appl. Phys. Lett. 10: 16-18

    Article  ADS  Google Scholar 

  5. Armstrong, J.A., N. Bloembergen, J. Ducuing and P.S. Pershan. 1962. Interactions Between Light Waves in a Nonlinear Dielectric. Phys. Rev. 127: 1918-1939

    Article  ADS  Google Scholar 

  6. Basov, N.G. and A.M. Prokhorov. 1954. Application of Molecular Beams for the Radiospectroscopic Study of Rotational Molecular Spectra. Zh. Eksp. Teor. Fiz. 27: 431-438

    Google Scholar 

  7. Basov, N.G., V.A. Danilychev, Y.M. Popov and D.D. Khodkevich. 1970. Laser Operating in Vacuum Region of Spectrum by Excitation of Liquid Xenon with an Electron Beam. JETP Lett. 12: 329-331

    ADS  Google Scholar 

  8. Basov, N.G. and A.M. Prokhorov. 1955. About Possible Methods for Obtaining Active Molecules for a Molecular Oscillator. Sov. Phys. JETP 1: 184

    Google Scholar 

  9. Bass, M., A.E. Hill, P.A. Franken, C.W. Peters and G. Weinreich. 1962. Optical Mixing. Phys. Rev. Lett. 8: 18-18

    Article  ADS  Google Scholar 

  10. Bennett, W.R., Jr, R.A. McFarlane, W.L. Faust and C.K.N. Patel. 1962a. Dissociative Excitation Transfer and Optical Maser Oscillation in Ne-O2 and Ar-O2 RF Discharges. Phys. Rev. Lett. 8: 470-473

    Article  ADS  Google Scholar 

  11. Bennett, W.R., Jr 1962b. Gaseous Optical Masers. Appl. Opt. 1: 24-61

    Google Scholar 

  12. Bloembergen, N. 1956. Proposal for a New Type Solid State Maser. Phys. Rev. 104: 324-327

    Article  MathSciNet  ADS  Google Scholar 

  13. Bloembergen, N. and P.S. Pershan. 1962. Light Waves at Boundary of Nonlinear Media. Phys. Rev. 128: 606-622

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Bothe, W. 1923. Die räumliche Energieverteilung in der Hohlraumstrahlung. Z. Phys. 20: 145-152

    Article  ADS  Google Scholar 

  15. Boyd, G.D. and J.P. Gordon. 1961. Confocal Multimode Resonator for Millimeter through Optical Wavelength Masers. Bell. Syst. Tech. J. 40: 489-508

    Google Scholar 

  16. Boyd, G.D. and H. Kogelnik. 1962. Generalized Confocal Resonator Theory. Bell. Syst. Tech. J. 41: 1347

    Google Scholar 

  17. Brau, C.A. and J.J. Ewing. 1975. 354-nm Laser Action on XeF. Appl. Phys. Lett. 27: 435-437

    Article  ADS  Google Scholar 

  18. Burnett, N.H., H.A. Baldis, M.C. Richardson and G.D. Enright. 1977. Harmonic-Generation in CO2-Laser Target Interaction. Appl. Phys. Lett. 31: 172-174

    Article  ADS  Google Scholar 

  19. Butaeva, F.A. and V.A. Fabrikant. 1959. On the Medium with Negative Absorption Coefficient, in Investigations on Experimental and Theoretical Physics, in Memory of Gregory Samuilovich Landsberg. Academy of Science, P. N. Lebedev Physical Institute, Moscow, 62-70

  20. Collins, R.J., D.F. Nelson, A.L. Schawlow, W. Bond, C.G.B. Garrett and W. Kaiser. 1960. Coherence, Narrowing, Directionality, and Relaxation Oscillations in the Light Emission from Ruby. Phys. Rev. Lett. 5: 303-305

    Article  ADS  Google Scholar 

  21. DeMaria, A.J., D.A. Stetser and H. Heynau. 1966. Self Mode-Locking of Lasers with Saturable Absorbers. Appl. Phys. Lett. 8: 174-176

    Article  ADS  Google Scholar 

  22. Denk, W., J.H. Strickler and W.W. Webb. 1990. Two-Photon Laser Scanning Fluorescence Microscopy. Science 248: 73-76

    Article  ADS  Google Scholar 

  23. Duguay, M.A., J.A. Giordmaine and J.W. Hansen. 1968. Compression of Optical Pulses by Means of the Electrooptic Doppler Shifter. J. Quant. Electr. QE-4: 252-255

    ADS  Google Scholar 

  24. Duguay, M.A. and J.W. Hansen. 1969. Compression of Pulses from a Mode-Locked He-Ne Laser. Appl. Phys. Lett. 14: 14-16

    Article  ADS  Google Scholar 

  25. Eckhardt, G., S.E. Schwarz, F.J. McClung, R.W. Hellwarth, E.J. Woodbury and D. Weiner. 1962. Stimulated Raman Scattering from Organic Liquids. Phys. Rev. Lett. 9: 455-457

    Article  ADS  Google Scholar 

  26. Einstein, A. 1916. Zur Quantentheorie der Strahlung. Physik. Gesell. Zürich Mitt. 18: 47-62

    ADS  Google Scholar 

  27. Einstein, A. 1917. zur Quantentheorie der Strahlung. Phys. Z. 18: 121-128

    Google Scholar 

  28. Einstein, A. and P. Ehrenfest. 1923. Zur Quantentheorie des Strahlungsgleichgewichts. Z. Phys. 19: 301-306

    Article  ADS  Google Scholar 

  29. Ewing, J.J. and C.A. Brau. 1975. Laser Action on Sigma Bands of KrF and XeCl. Appl. Phys. Lett. 27: 350-352

    Article  ADS  Google Scholar 

  30. Ferray, M., A. L’Huillier, X.F. Li, L.A. Lompre, G. Mainfray and C. Manus. 1988. Multiple-Harmonic Conversion of 1064-nm Radiation in Rare-Gases. J. Phys. B 21: L31

    Article  ADS  Google Scholar 

  31. Fisher, R.A., P.L. Kelley and T.K. Gustafson. 1969. Subpicosecond Pulse Generation Using Optical Kerr Effect. Appl. Phys. Lett. 14: 140-143

    Article  ADS  Google Scholar 

  32. Fork, R.L., B.I. Greene and C.V. Shank. 1981. Generation of Optical Pulses Shorter Than 0.1 psec by Colliding Pulse Mode-Locking. Appl. Phys. Lett. 38: 671-672

    Article  ADS  Google Scholar 

  33. Fox, A.G. and T. Li. 1961. Resonant Modes in a Maser Interferometer. Bell. Syst. Tech. J. 40: 453-488

    Google Scholar 

  34. Franken, P.A., G. Weinreich, C.W. Peters and A.E. Hill. 1961. Generation of Optical Harmonics. Phys. Rev. Lett. 7: 118-119

    Article  ADS  Google Scholar 

  35. Garrett, C.G.B., W. Kaiser and W.L. Bond. 1961. Stimulated Emission into Optical Whispering Modes of Spheres. Phys. Rev. 124: 1807-1809

    Article  ADS  Google Scholar 

  36. Geusic, J.E., H.M. Marcos and L.G. Van Uitert. 1964. Laser Oscillations in Nd-Doped Yttrium Aluminum Yttrium Gallium and Gadolinium Garnets Appl. Phys. Lett. 4: 182-184

    Article  ADS  Google Scholar 

  37. Giordmaine, J.A. 1962. Mixing of Light Beams in Crystals. Phys. Rev. Lett. 8: 19-20

    Article  ADS  Google Scholar 

  38. Giordmaine, J.A. and R.C. Miller. 1965. Tunable Coherent Parametric Oscillation in LiNbO3 at Optical Frequencies. Phys. Rev. Lett. 14: 973-976

    Article  ADS  Google Scholar 

  39. Glauber, R.J. 1963. Photon Correlations. Phys. Rev. Lett. 10: 84-86

    Article  MathSciNet  ADS  Google Scholar 

  40. Goeppert-Mayer, M. 1931. Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. 401: 273-294

    Article  Google Scholar 

  41. Gordon, J.P., H.J. Zeiger and C.H. Townes. 1954. Molecular Microwave Oscillator and New Hyperfine Structure in the Microwave Spectrum of NH3. Phys. Rev. 95: 282-284

    Article  ADS  Google Scholar 

  42. Haken, H. 1964. Nonlinear Theory of Laser Noise and Coherence. I. Z. Phys. 181: 96-124

    Article  ADS  Google Scholar 

  43. Hall, R.N., R.O. Carlson, T.J. Soltys, G.E. Fenner and J.D. Kingsley. 1962. Coherent Light Emission from GaAs Junctions. Phys. Rev. Lett. 9: 366-368

    Article  ADS  Google Scholar 

  44. Hargrove, L.E., R.L. Fork and M.A. Pollack. 1964. Locking of He-Ne Laser Modes Induced by Synchronous Intracavity Modulation. Appl. Phys. Lett. 5: 4-5

    Article  ADS  Google Scholar 

  45. Hellwarth, R.W. 1961. Control of Fluorescent Pulsations. in Advances in Quantum Electronics, edited by J. Singers. Columbia Press, New York, 334

  46. Hoffman, J.M., A.K. Hays and G.C. Tisone. 1976. High-Power UV Noble-Gas-Halide Lasers. Appl. Phys. Lett. 28: 538-539

    Article  ADS  Google Scholar 

  47. Holonyak, N. and S.F. Bevacqua. 1962. Coherent (Visible) Light Emission from Ga(As1−xPx) Junctions. Appl. Phys. Lett. 1: 82-83

    Article  ADS  Google Scholar 

  48. Hopfield, J.J., J.M. Worlock and K. Park. 1963. Two-Quantum Absorption Spectrum of KI. Phys. Rev. Lett. 11: 414-417

    Article  ADS  Google Scholar 

  49. Houtermans, F.G. 1960. Über Maser-Wirkung im optischen Spektralgebiet und die Möglichkeit absolut negativer Absorption für einige Fälle von Molekülspektren (Licht-Lawine). Helv. Phys. Acta 33: 933

    Google Scholar 

  50. Javan, A. 1959. Possibilty of Production of Negative Temperature in Gas Discharges. Phys. Rev. Lett. 3: 87-89

    Article  ADS  Google Scholar 

  51. Javan, A., W.R. Bennett, Jr. and D.R. Herriott. 1961. Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He-Ne Mixture. Phys. Rev. Lett. 6: 106-110

    Article  ADS  Google Scholar 

  52. Jaynes, E.T. and F.W. Cummings. 1963. Comparison of Quantum and Semiclassical Radiation Theories with Application to Beam Maser. Proc. IEEE 51: 89-109

    Article  Google Scholar 

  53. Kaiser, W. and C.G.B. Garrett. 1961a. 2-Photon Excitation in CaF2 - Eu2+. Phys. Rev. Lett. 7: 229-231

    Article  ADS  Google Scholar 

  54. Kaiser, W., D.L. Wood and C.G.B. Garrett. 1961b. Fluorescence and Optical Maser Effects in CaF2:Sm++. Phys. Rev. 123: 766-776

    Article  ADS  Google Scholar 

  55. Kingston, R.H. 1962. Parametric Amplification and Oscillation at Optical Frequencies. Proc. Inst. Radio Eng. 50: 472

    Google Scholar 

  56. Kleinman, D.A. 1962. Nonlinear Dielectric Polarization in Optical Media. Phys. Rev. 126: 1977-1979

    Article  ADS  Google Scholar 

  57. Koester, C.J. and E. Snitzer. 1964. Amplification in Fiber Laser. Appl. Opt. 3: 1182-1186

    Article  ADS  Google Scholar 

  58. Kopfermann, H. and R. Ladenburg. 1928a. Untersuchungen über die anomale Dispersion angeregter Gase II. Z. Phys. 48: 26-50

    Article  ADS  Google Scholar 

  59. Kopfermann, H. and R. Ladenburg. 1928b. Untersuchungen über die anomale Dispersion angeregter Gase III. Z. Phys. 48: 51-61

    Article  ADS  Google Scholar 

  60. Kopfermann, H. and R. Ladenburg. 1928c. Experimental Proof of “Negative Dispersion”. Nature 122: 438-439

    Article  ADS  Google Scholar 

  61. Kopfermann, H. and R. Ladenburg. 1928d. Experimenteller Nachweis der “negativen” Dispersion. Z. Phys. Chem. A-Chem. T 139: 375-385

    Google Scholar 

  62. Kramers, H.A. 1924a. The Law of Dispersion and Bohr’s Theory of Spectra. Nature 113: 673-674

    Article  ADS  Google Scholar 

  63. Kramers, H.A. 1924b. The Quantum Theory of Dispersion. Nature 114: 310-311

    Article  ADS  Google Scholar 

  64. Kramers, H.A. and W. Heisenberg. 1925. Über die Streuung von Strahlung durch Atome. Z. Phys. 31: 681-708

    Article  ADS  Google Scholar 

  65. Kroll, N.M. 1962. Parametric Amplification in Spatially Extended Media and Application to Design of Tuneable Oscillators at Optical Frequencies. Phys. Rev. 127: 1207-1211

    Article  ADS  Google Scholar 

  66. Kruse, M. 1938. Nachweis der negativen Dispersion an elektrisch angeregtem Helium. Z. Phys. 109: 312-331

    Article  ADS  Google Scholar 

  67. Kurnit, N.A., S.R. Hartmann and I.D. Abella. 1964. Observation of Photon Echo. Phys. Rev. Lett. 13: 567-568

    Article  ADS  Google Scholar 

  68. Ladenburg, R. 1928. Untersuchungen über die anomale Dispersion angeregter Gase I. Teil. Zur Prüfung der quantentheoretischen Dispersiondformel. Z. Phys. 48: 15-25

    Article  ADS  Google Scholar 

  69. Ladenburg, R. 1933. Dispersion in Electrically Excited Gases. Rev. Mod. Phys. 5: 243-256

    Article  ADS  Google Scholar 

  70. Lamb, W.E., Jr. 1964. Theory of Optical Maser. Phys. Rev. A 134: A1429-A1450

    Article  ADS  Google Scholar 

  71. Laubereau, A. 1969. External Frequency Modulation and Compression of Picosecond Pulses. Phys. Lett. A A 29: 539-540

    Article  ADS  Google Scholar 

  72. Lukishova, S.G. 2010. Valentin A. Fabrikant: Negative Absorption, his 1951 Patent Application for Amplification of Electromagnetic Radiation (Ultraviolet, Visible, Infrared and Radio Spectral Regions) and his Experiments. J. Eur. Opt. Soc. 5: 10045S

    Article  Google Scholar 

  73. Macek, W.M. and D.T.M. Davis. 1963. Rotation Rate Sensing with Traveling-Wave Ring Lasers. Appl. Phys. Lett. 2: 67-68

    Article  ADS  Google Scholar 

  74. Maier, M., W. Kaiser and J.A. Giordmaine. 1966. Intense Light Bursts in Stimulated Raman Effect. Phys. Rev. Lett. 17: 1275-1277

    Article  ADS  Google Scholar 

  75. Maiman, T.H. 1960a. Speech by Dr. Theodore H. Maiman, Hughes Aircraft Company, at a Press Conference at the Hotel Delmonico, New York, July 7, 1960. URL: http://www.hrl.com/lasers/pdfs/maiman_60.07.07.pdf, accessed on March 9, 2011

  76. Maiman, T.H. 1960b. Stimulated Optical Radiation in Ruby. Nature 187: 493-494

    Article  ADS  Google Scholar 

  77. Maiman, T.H. 1960c. Optical and Microwave-Optical Experiments in Ruby. Phys. Rev. Lett. 4: 564-566

    Article  ADS  Google Scholar 

  78. Maiman, T.H. 1960d. Optical Maser Action in Ruby. Br. Comm. Electr. 7: 674-687

    Google Scholar 

  79. Maiman, T.H. 1961a. Stimulated Optical Emission in Fluorescent Solids. I. Theoretical Considerations. Phys. Rev. 123: 1145-1150

    Article  ADS  Google Scholar 

  80. Maiman, T.H., R.H. Hoskins, I.J. D’Haenens, C.K. Asawa and V. Evtuhov. 1961b. Stimulated Optical Emission in Fluorescent Solids. II. Spectroscopy and Stimulated Emission in Ruby. Phys. Rev. 123: 1151-1157

    Article  ADS  Google Scholar 

  81. Maiman, T.H. 2000. The Laser Odyssey. Laser Press, Blaine, WA

  82. Maker, P.D., R.W. Terhune, M. Nisenoff, and C.M. Savage. 1962. Effects of Dispersion and Focusing on Production of Optical Harmonics. Phys. Rev. Lett. 8: 21-22

    Article  ADS  Google Scholar 

  83. Maker, P.D. and R.W. Terhune. 1965. Study of Optical Effects Due to an Induced Polarization Third Order in Electric Field Strength. Phys. Rev. 137: A801-A818

    Article  ADS  Google Scholar 

  84. McCall, S.L. and E.L. Hahn. 1969. Self-Induced Transparency. Phys. Rev. 183: 457-485

    Article  ADS  Google Scholar 

  85. McClung, F.J. and R.W. Hellwarth. 1962. Giant Optical Pulsations from Ruby. J. Appl. Phys. 33: 828-829

    Article  ADS  Google Scholar 

  86. Milne, E.A. 1924. The Equilibrium of the Calcium Chromosphere. Month. Not. R. Astron. Soc. 85: 111-141

    ADS  Google Scholar 

  87. Mocker, H.W. and R.J. Collins. 1965. Mode Competition and Self-Locking Effects in Q-Switched Ruby Laser. Appl. Phys. Lett. 7: 270-273

    Article  ADS  Google Scholar 

  88. Myers, R.A. and R.W. Dixon. 2003. Who Invented the Laser: An Analysis of the Early Patents. Hist. Stud. Phys. Biol. Sci. 34: 115-149. URL: http://www.jstor.org/stable/10.1525/hsps.2003.34.1.115

    Google Scholar 

  89. Nathan, M., W.P. Dumke , G. Burns , F.H. Dill, Jr . and G. Lasher. 1962. Stimulated Emission of Radiation from GaAs pn Junctions. Appl. Phys. Lett. 1: 62-64

    Article  ADS  Google Scholar 

  90. Nelson, D.F. and W.S. Boyle. 1962. A Continuously Operating Ruby Optical Maser. Appl. Opt. 1: 99-101

    Google Scholar 

  91. Nelson, D.F., R.J. Collins and W. Kaiser. 2010. Bell Labs and the Ruby Laser. Phys. Today 63: 40-45

    Article  ADS  Google Scholar 

  92. Patel, C.K.N. 1964. Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2. Phys. Rev. 136: A1187-A1193

    Article  ADS  Google Scholar 

  93. Ploetz, E., S. Laimgruber, S. Berner, W. Zinth and P. Gilch. 2007. Femtosecond Stimulated Raman Microscopy. Appl. Phys. B 87: 389-393

    Article  ADS  Google Scholar 

  94. Purcell, E.M. and R.V. Pound. 1951. A Nuclear Spin System at Negative Temperature. Phys. Rev. 81: 279-280

    Article  ADS  Google Scholar 

  95. Quist, T.M., R.H. Rediker, R.J. Keyes, W.E. Krag, B. Lax, A.L. McWhorter and H.J. Zeigler. 1962. Semiconductor Maser of GaAs. Appl. Phys. Lett. 1: 91-92

    Article  ADS  Google Scholar 

  96. Rayleigh, L. 1910. The Problem of the Whispering Gallery. Philos. Mag. Series 6, 20: 1001-1004

    Article  Google Scholar 

  97. Riedle, E., M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sporlein and W. Zinth. 2000. Generation of 10 to 50 fs Pulses Tunable Through All of the Visible and the NIR. Appl. Phys. B 71: 457-465

    ADS  Google Scholar 

  98. Rigden, J.D. and E.I. Gordon. 1962. Granularity of Scattered Optical Maser Light. Proc. Inst. Radio Eng. 50: 2367-2368

    Google Scholar 

  99. Risken, H. 1965. Distribution- and Correlation-Functions for a Laser Amplitude. Z. Phys. 186: 85-98

    Article  ADS  Google Scholar 

  100. Sanders, J.H., M.J. Taylor and C.E. Webb. 1962. Search for Light Amplification in a Mixture of Mercury Vapour and Hydrogen. Nature 193: 767

    Article  ADS  Google Scholar 

  101. Schäfer, F.P., W. Schmidt and J. Volze. 1966. Organic Dye Solution Laser. Appl. Phys. Lett. 9: 306-309

    Article  ADS  Google Scholar 

  102. Schawlow, A.L. and C.H. Townes. 1958. Infrared and Optical Masers. Phys. Rev. 112: 1940-1949

    Article  ADS  Google Scholar 

  103. Scovil, H.E.D., G. Feher and H. Seidel. 1957. Operation of a Solid State Maser. Phys. Rev. 105: 762-763

    Article  ADS  Google Scholar 

  104. Scully, M.O. and W.E. Lamb, Jr. 1966. Quantum Theory of an Optical Maser. Phys. Rev. Lett. 16: 853-855

    Article  ADS  Google Scholar 

  105. Scully, M.O. and W.E. Lamb, Jr. 1968. Quantum Theory of an Optical Maser 2. Spectral Profile. Phys. Rev. 166: 246-249

    Article  ADS  Google Scholar 

  106. Shank, C.V. and E.P. Ippen. 1974. Subpicosecond Kilowatt Pulses from a Mode-Locked cw Dye Laser. Appl. Phys. Lett. 24: 373-375

    Article  ADS  Google Scholar 

  107. Shimoda, K. and A. Javan. 1965. Stabilization of He-Ne Maser on Atomic Line Center. J. Appl. Phys. 36: 718-726

    Article  ADS  Google Scholar 

  108. Smith, A.W. and J.A. Armstrong. 1966. Laser Photon Counting Distributions Near Threshold. Phys. Rev. Lett. 16: 1169-1172

    Article  ADS  Google Scholar 

  109. Snitzer, E. 1961. Optical Maser Action of Nd+3 in a Barium Crown Glass. Phys. Rev. Lett. 7: 444-446

    Article  ADS  Google Scholar 

  110. Sorokin, P.P. and M.J. Stevenson. 1961a. Solid State Optical Masers Using U3+ and Sm2+. J. Opt. Soc. Am. 51: 477

    Google Scholar 

  111. Sorokin, P.P. and M.J. Stevensen . 1961b. Solid-State Optical Maser Using Divalent Samarium in Calcium Fluoride IBM J. Res. Dev. 5: 56-58

    Article  Google Scholar 

  112. Sorokin, P.P., J.R. Lankard, G.D. Pettit and J.J. Luzzi. 1964. Ruby Laser Q-Switching Elements Using Phthalocyanine Molecules in Solution. IBM J. Res. Dev. 8: 182-184

    Article  Google Scholar 

  113. Sorokin, P.P. and J.R. Lankard. 1966. Stimulated Emission Observed from an Organic Dye Chloro-Aluminum Phthalocyanine. IBM J. Res. Dev. 10: 162-163

    Article  Google Scholar 

  114. Stepanov, B.I., A.N. Rubinov and V.A. Mostovnikov. 1967. Optic Generation in Solutions of Complex Molecules. JETP Lett. 5: 117-119

    ADS  Google Scholar 

  115. Strickland, D. and G. Mourou. 1985. Compression of Amplified Chirped Optical Pulses. Opt. Commun. 55: 447-449

    Article  ADS  Google Scholar 

  116. Sugano, S. and Y. Tanabe. 1958. Absorption Spectra of Cr3+ IN Al2O3. A Theoretical Study of the Absorption Bands and Lines. J. Phys. Soc. Jpn 13: 880-899

    Article  ADS  Google Scholar 

  117. Szipöcs, R., F. Kàrpàt, C. Spielmann and F. Krausz. 1994. Chirped Multilayer Coatings for Broadband Dispersion Control in Femtosecond Lasers. Opt. Lett. 19: 201-203

    Article  ADS  Google Scholar 

  118. Tolman, R.C. 1924. Duration of Molecules in Upper Quantum States. Phys. Rev. 23: 693-709

    Article  ADS  Google Scholar 

  119. Townes, C.H. 1999. How the Laser Happened - Adventures of a Scientist. Oxford University Press, New York

  120. Treacy, E.B. 1968. Compression of Picosecond Light Pulses. Phys. Lett. A 28: 34-35

    Article  ADS  Google Scholar 

  121. Van Vleck, J.H. 1924. The Absorption of Radiation by Multiply Periodic Orbits, and its Relation to the Correspondence Principle and the Rayleigh-Jeans Law. Part I. Some Extensions of the Correspondence Principle. Phys. Rev. 24: 330-346

    Article  ADS  Google Scholar 

  122. Vasilenko, L.S., V.P. Chebotayev and A.V. Shishaev. 1970. Line Shape of 2-Photon Absorption in a Standing-Wave Field in a Gas. JETP Lett. 12: 113-116

    ADS  Google Scholar 

  123. von der Linde, D., O. Bernecker and W. Kaiser. 1970. Experimental Investigation of Single Picosecond Pulses. Opt. Commun. 2: 149-152

    Article  ADS  Google Scholar 

  124. Wang, C.C. and G.W. Racette. 1965. Measurement of Parametric Gain Accompanying Optical Difference Frequency Generation. Appl. Phys. Lett. 6: 169-171

    Article  ADS  Google Scholar 

  125. Weber, H.P. 1967. Method for Pulsewidth Measurement of Ultrashort Light Pulses Generated by Phase-Locked Lasers Using Nonlinear Optics. J. Appl. Phys. 38: 2231-2234

    Article  ADS  Google Scholar 

  126. Weber, J. 1953. Trans. Inst. Radio Engrs. Prof. Group on Electron Devices PGED-3

  127. White, A.D. and J.D. Rigden. 1962. Continuous Gas Maser Operation in Visible. Proc. Inst. Radio Eng. 50: 1697

    Google Scholar 

  128. Wieder, I. 1959. Solid-State, High-Intensity Monochromatic Light Sources. Rev. Sci. Instrum. 30: 995-996

    Article  ADS  Google Scholar 

  129. Woodbury, E.J. and W.K. Ng. 1962. Ruby Laser Operation in Near IR. Proc. Inst. Radio Eng. 50: 2367-2368

    Google Scholar 

  130. Yariv, A. and J.P. Gordon. 1963. Laser. Proc. IEEE 51: 4-29

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Zinth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinth, W., Laubereau, A. & Kaiser, W. The long journey to the laser and its rapid development after 1960. EPJ H 36, 153–181 (2011). https://doi.org/10.1140/epjh/e2011-20016-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2011-20016-0

Keywords

Navigation