Skip to main content

Advertisement

Log in

Shock wave physics and detonation physics — a stimulus for the emergence of numerous new branches in science and engineering

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

In the period of the Cold War (1945−1991), Shock Wave Physics and Detonation Physics (SWP&DP) — until the beginning of WWII mostly confined to gas dynamics, high-speed aerodynamics, and military technology (such as aero- and terminal ballistics, armor construction, chemical explosions, supersonic gun, and other firearms developments) — quickly developed into a large interdisciplinary field by its own. This rapid expansion was driven by an enormous financial support and two efficient feedbacks: the Terminal Ballistic Cycleand the Research& Development Cycle. Basic knowledge in SWP&DP, initially gained in the Classic Period(from 1808) and further extended in the Post-Classic Period(from the 1930s to present), is now increasingly used also in other branches of Science and Engineering (S&E). However, also independent S&E branches developed, based upon the fundamentals of SWP&DP, many of those developments will be addressed (see Tab. 2). Thus, shock wave and detonation phenomena are now studied within an enormous range of dimensions, covering microscopic, macroscopic, and cosmic dimensions as well as enormous time spans ranging from nano-/picosecond shock durations (such as produced by ultra-short laser pulses) to shock durations that continue for centuries (such as blast waves emitted from ancient supernova explosions). This paper reviews these developments from a historical perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.D. Bennett, Long rod penetrator performance, J. Battlefield Technol. 1, 1–6 (1998)

    Google Scholar 

  2. S.D. Poisson, Mémoire sur la théorie du son, J. École Polytech. (Paris) 7, 319–392 (1808)

    Google Scholar 

  3. A. Toepler, Beobachtungen nach einer neuen optischen Methode (M. Cohen & Sohn, Bonn, 1864), p. 43

  4. P.O.K. Krehl, History of shock waves, explosions, and impact – a chronological and biographical reference (Springer, Berlin etc., 2009)

  5. D.J. Hollenbach, C.F. McKee, Astrophysical shock waves, edited by S.P. Maran, In: The astronomy and astrophysics encyclopedia, edited by S.P. Maran (Van Nostrand & Reinhold, New York, 1992), pp. 623–627

  6. G. Zemplén, Sur l’impossibilité d’ondes de choc négatives dans les gaz, C. R. Acad. Sci. Paris 141, 710–712 (1905)

    Google Scholar 

  7. G. Zemplén, Sur l’impossibilité d’ondes de choc négatives dans les gaz, C. R. Acad. Sci. Paris 142, 142–143 (1906)

    MATH  Google Scholar 

  8. J. Tissot, Discours véritable de la vie, mort, et des os du géant Theutobocus [...]. (Poyet, Lyon, 1613), edited by E. Fournier, In: Variétés histoires et littéraires, I-IX (Jannet, Paris, 1855–1863)

  9. J. Bernoulli, Discours sur les lois de la communication du mouvement. In: Johannis Bernoulli: opera omnia, edited by J.E. Hofmann (Olms, Hildesheim, 1968), Vol. 3, Chap. 1, pp. 7–14

  10. D. Diderot, J. Le Rond d’Alembert, Encyclopédie ou dictionnaire raisonné des sciences, des arts et des métiers. 35 vols. (S. Faulche, Neufchatel, 1751–1780)

  11. R.Z. Sagdeev, C.F. Kennel, Collisionless shock waves, Scient. Am. 264, 106–113 (1991)

    Article  Google Scholar 

  12. R.A. Strehlow, Detonation and the hydrodynamics of reactive shock waves, Preprints of Papers of a Symposium – 11th Nat. Meet. ACS Division of Fuel Chemistry, Boston (Fall, 1967), 11-4, pp. 1–28

  13. C. Huygens, Règles du mouvement dans la rencontre des corps, Journal des Sçavans 5, 22–24 (1669)

    Google Scholar 

  14. C. Huygens, Christiani Hugenii opuscula posthuma. edited by B. De Volder, B. Fullenius (Boutesteyn, Lugduni Batavorum, 1703)

  15. E. Mariotte, Traité de la percussion ou choc des corps (E. Michallet, Paris, 1673)

  16. C. Wren, Lex Naturae de collisione corporum [in Lat.], Philos. Trans. Roy. Soc. Lond. 3, 867–868 (1669)

    Google Scholar 

  17. J. Wallis, A summary account of the general laws of motion, by way of letter written by him to the Publisher, and communicated to the R. Society, Philos. Trans. Roy. Soc. Lond. 3, 864–866 (1669)

    Google Scholar 

  18. G. Coriolis, Théorie mathématique des effets du jeu de billard (Carilian-Goeury, Paris, 1835)

  19. C.A. Truesdell III, Euler’s two letters to Lagrange in October, 1759. In: Leonardi Euleri opera omnia, edited by C.A. Truesdell III (Teubner, Leipzig etc., 1926); see Vol. XIII [II], pp. xxxvii–xli

  20. C.(V.) Dvořák, Über eine neue einfache Art der Schlierenbeobachtung, Ann. Phys. 9, 502–511 (1880)

    Google Scholar 

  21. J. Jamin, Description d’un nouvel appareil de recherches, fondé sur les interférences, C. R. Acad. Sci. Paris 42, 482–485 (1856)

    Google Scholar 

  22. J. Jamin, Neuer Interferential-Refractor, Ann. Phys. 98, 345–349 (1856)

    Google Scholar 

  23. L. Mach, Über ein Interferenzrefraktor, Sitzungsber. Akad. Wiss. Wien 101, 5–10 (1892)

    Google Scholar 

  24. L. Mach, Über ein Interferenzrefraktor, Sitzungsber, Akad. Wiss. Wien 102, 1035–1056 (1893)

    ADS  Google Scholar 

  25. K. Antolik, Das Gleiten elektrischer Funken, Ann. Phys. 151, 127–130 (1874)

    Google Scholar 

  26. E. Mach, J. Wosyka, Über einige mechanische Wirkungen des elektrischen Funkens. Sitzungsber, Akad. Wiss. Wien 72, 44–52 (1875)

    Google Scholar 

  27. P.O.K. Krehl, Single-Mach and double-Mach reflection – its representation in Ernst Mach’s historical soot method. In: Proc. 18th Int. Symposium on Shock Waves, edited by K. Takayama (Springer, Berlin etc., 1992), pp. 221–226

  28. Y. Denisov, Y. Troshin, Pulsating and spinning detonation of gaseous mixtures in tubes [in Russ.], Dokl. AN 125, 110–113 (1959)

    Google Scholar 

  29. Y. Denisov, Y. Troshin, Structure of gaseous detonation in tubes, Sov. Phys. Tech. Phys. 5, 419–431 (1960)

    Google Scholar 

  30. F. Zhang, H. Grönig, A. Van De Ven, DDT and detonation waves in dust-air mixtures, Shock Waves 11, 53–71 (2001)

    Article  ADS  Google Scholar 

  31. C. Wheatstone, Description of the electromagnetic clock, Proc. Roy. Soc. Lond. 4, 249–278 (1840)

    Google Scholar 

  32. C. Wheatstone, Note sur le chronoscope électro-magnétique, C. R. Acad. Sci. Paris 20, 1554–1561 (1845)

    Google Scholar 

  33. B. Edgell, S. Edgell, W. Legge, The Wheatstone-Hipp chronoscope. Its adjustments, accuracy, and control, Brit. J. Psychology II, 58–88 (1906)

    Google Scholar 

  34. C.S.M. Pouillet, Note sur un moyen de mesurer des intervalles de temps extrêmement courts, comme la durée du choc des corps élastiques, celle du débandement des ressorts, de l’inflammation de la poudre etc.; et sur un moyen nouveau de comparer les intensités des courants électriques, soit permanents, soit instantanés, C. R. Acad. Sci. Paris 19, 1384–1389 (1844)

    Google Scholar 

  35. R. Sabine, On a method of measuring very small intervals of time, Philos. Mag. 1, 337–346 (1876)

    Google Scholar 

  36. R. Sabine, Dauer eines Schlages, Dingler’s Polytech. J. 222, 499–500 (1876)

    Google Scholar 

  37. W. von Siemens, Über die Anwendung des electrischen Funkens zu Geschwindigkeitsmessungen, Ann. Phys. 66, 435–444 (1845)

    Google Scholar 

  38. P.E. Le Boulengé, Mémoire sur un chronographe électro-balistique, Mém. Cour. Mém. Sav. Etrang. Acad. Roy. (Bruxelles) 32, 1–39 (1864/1865)

    Google Scholar 

  39. F.A. Bashforth, A revised account of the experiments made with the Bashforth chronograph to find the resistance of the air to the motion of projectiles, with the application of the results to the calculation of trajectories according to J. Bernoulli’s method. (Cambridge University Press, Cambridge, 1890)

  40. A. Noble, On methods that have been adopted for measuring pressures in the bores of guns, Rept. Meet. Brit. Assoc. 64, 523–540 (1894)

    Google Scholar 

  41. M. Deprez, Études sur les chronographes électriques et recherches sur l’étincelle d’induction et les électro-aimants, C. R. Acad. Sci. Paris 78, 1427–1430 (1874)

    Google Scholar 

  42. M. Deprez, Perfectionnement aux chronographes électriques et recherches sur les électro-aimants, C. R. Acad. Sci. Paris 78, 1562–1565 (1874)

    Google Scholar 

  43. H. Sébert, Notice sur de nouveaux apparats balistiques employés par la service de l’artillerie de la marine (L. Baudoin, Paris, 1881)

  44. F.J. Jervis-Smith, A new form of electric chronograph, Philos. Mag. 29, 377–383 (1890)

    Google Scholar 

  45. C. Cranz, K. Becker, Messungen über den Luftwiderstand bei großen Geschwindigkeiten, Artilleristische Monatshefte 69, 189–196 (1912)

    Google Scholar 

  46. C. Cranz, K. Becker, Messungen über den Luftwiderstand bei großen Geschwindigkeiten, Artilleristische Monatshefte 71, 333–368 (1912)

    Google Scholar 

  47. A.E. Dufour, Oscillographe cathodique pour l’étude des basses, moyenne et hautes fréquences, L’onde électrique 1, 638–663; 699–715 (1922)

    Google Scholar 

  48. A.E. Dufour , L’onde électrique 2, 19–42 (1923)

    Google Scholar 

  49. A.B. Wood, The cathode ray oscillograph, Proc. Phys. Soc. (Lond.) 35, 109–124 (1923)

    Google Scholar 

  50. A.B. Wood, The cathode ray oscillograph, Inst. Electr. Eng. J. 63, 1046–1055 (1925)

    Google Scholar 

  51. D.A. Keys, A piezoelectric method of measuring explosion pressures, Philos. Mag. 42 [VI], 473–488 (1921)

    Google Scholar 

  52. D.A. Keys, The cathode-ray oscillograph and its application to the exact measurement of explosion pressures, potential changes in vacuum tubes and high tension magnetos, J. Franklin Inst. 196, 576–591 (1923)

    Article  Google Scholar 

  53. H. Joachim , H. Illgen , Gasdruckmessungen mit Piezoindikator, Z. Ges. Schieß- u. Sprengstoffwesen 2, 76–79; 121–125 (1932)

    Google Scholar 

  54. T.J. Rodman, Reports of experiments on the properties of metals for cannon, and the qualities of cannon powder; with an account of the fabrication and trial of a 15-inch gun. (Crosby, Boston, MA, 1861)

  55. A. Noble, On the tension of fired gunpowder, Proc. Roy. Inst. 6, 274–283 (1872)

    Google Scholar 

  56. A. Noble, Sur la force explosive de la poudre à canon, Rev. Scient. France & Etrang. 48, 1125–1141 (1872)

    Google Scholar 

  57. H.W. Hilliar, Experiments on the pressure wave thrown out by submarine explosions, (Brit.) Dept. of Scientific Research & Experiment, Rept. RE 142/19 (1919), Reprinted, Underwater explosion research; a compendium of British and American reports (ONR, Washington, DC, 1950); see Vol. 1: The shock wave, pp. 83–158

  58. W. Wolff , Die Messung von Geschossgeschwindigkeiten, Mutter Erde (Spemann Berlin, etc.) 2, 145–148 (1900)

    Google Scholar 

  59. R. Blochmann , Die Explosion unter Wasser, Marine-Rundschau 9 (1. Teil), 197–227 (1898)

    Google Scholar 

  60. F.E. Mallard , H.L. Le Châtelier , Recherches expérimentales et théoriques sur la combustion des mélanges gazeux explosifs, Ann. Mines 3 [VIII], 31–68 (1883)

    Google Scholar 

  61. F.E. Mallard, H.L. Le Châtelier, Ann. Mines 4, 274–568 (1883)

    Google Scholar 

  62. B. Thompson, Experiments to determine the force of fired gunpowder, Philos. Trans. Roy. Soc. Lond. 87, 222–292 (1797)

    Article  Google Scholar 

  63. R.W. Bunsen, Gasometry: comprising the leading physical and chemical properties of gases (Walton & Maberly, London, 1857)

  64. Ch. Hutton, On a new gunpowder eprouvette, see his Tracts on mathematical and philosophical subjects, in three volumes (Rivington etc., London, 1812), Vol. III, pp. 153–163

  65. W.H.F. Talbot, On the production of instantaneous images, Philos. Mag. 3, 73–77 (1852)

    Google Scholar 

  66. R.L. Maddox, An experiment with gelantino-bromide, Brit. J. Photogr. 18, 422–423 (1871)

    Google Scholar 

  67. C. Wheatstone, An account of some experiments to measure the velocity of electric light, Proc. Roy. Soc. Lond. 3, 299–300 (1834)

    Google Scholar 

  68. A.J. von Oettingen, A. von Gernet, Über Knallgasexplosionen, Ann. Phys. 33, 586–609 (1888)

    Google Scholar 

  69. W. Payman, D.W. Woodhead, Explosion waves and shock waves, Proc. Roy. Soc. Lond. A 132, 200–213 (1931)

    Article  ADS  Google Scholar 

  70. C. Cranz, H. Schardin, Kinematographie auf ruhendem Film und mit extrem hoher Bildfrequenz, Z. Phys. 56, 147–183 (1929)

    Article  ADS  Google Scholar 

  71. H. Davy, (I) On the fire-damp of coal mines, and on methods of lighting the mines so as to prevent its explosion, Philos. Trans. Roy. Soc. Lond. 106, 1–22 (1816)

    Google Scholar 

  72. M. Faraday, C. Lyell, On explosions in coal mines, Philos. Mag. 26, 16–35 (1845)

    Google Scholar 

  73. W. Galloway, On the influence of coal dust in colliery explosions, Proc. Roy. Soc. Lond. 24, 354–372 (1876)

    Google Scholar 

  74. W. Galloway, On the influence of coal dust in colliery explosions, Proc. Roy. Soc. Lond. 28, 410–421 (1879)

    Google Scholar 

  75. W. Galloway, On the influence of coal dust in colliery explosions, Proc. Roy. Soc. Lond. 32, 454–455 (1881)

    Article  Google Scholar 

  76. W. Galloway , On the influence of coal dust in colliery explosions, Proc. Roy. Soc. Lond. 33, 437–445; 490–495 (1882)

    Google Scholar 

  77. G. Charpy, Les travaux de la Commission du grisou, Rev. Gén. Sci. Pures Appl. 1, 540–546 (1890)

    Google Scholar 

  78. J.N. Haton de la Goupillière , Rapport présenté au nom de la commission d’étude des moyens propres à prévenir les explosions de grisou, Ann. Mines 18, 193–411 (1880)

    Google Scholar 

  79. P.E.M. Berthelot, Sur la vitesse de propagation des phénomènes explosifs dans les gaz, C. R. Acad. Sci. Paris 93, 18–22 (1881)

    Google Scholar 

  80. P.E.M. Berthelot, Détonation de l’acétylène, du cyanogène et des combinaisons endothermiques en général, C. R. Acad. Sci. Paris 93, 613–619 (1881)

    Google Scholar 

  81. P.E.M. Berthelot, P. Vieille, Nouvelles recherches sur la propagation des phénomènes explosifs dans les gaz, C. R. Acad. Sci. Paris 95, 151–157 (1882)

    Google Scholar 

  82. P.E.M. Berthelot, P. Vieille, Sur la période d’état variable qui précède le régime de détonation et sur les conditions d’établissement de l’onde explosive, C. R. Acad. Sci. Paris 95, 199–205 (1882)

    Google Scholar 

  83. E. Mallard, H.L. Le Châtelier, Sur les vitesses de propagation de l’inflammation dans les mélanges gazeux explosifs, C. R. Acad. Sci. Paris 93, 145–148 (1881)

    Google Scholar 

  84. E. Mallard, H.L. Le Châtelier, Sur la vitesse de refroidissement des gaz aux températures élevées, C. R. Acad. Sci. Paris 93, 962–965 (1881)

    Google Scholar 

  85. Liber ignium ad comburendos hostes auctore Marco Græco, See F.J.G. De Laporte Du Theil, Traité des feux propres à détruire les ennemis, composé par Marcus Le Grec (publié d’après deux manuscrits de la Bibliothèque Nationale, Paris, 1804)

  86. R. Bacon, Fratris Rogeri Bacon, ordinis Minorum, opus majus ad Clementem IV, pontificem Romanum (Typis Gulielmi Bouyer, Londini, 1733)

  87. R.B. Burke, The opus maius of Roger Bacon (Univ. of Pennsylvania Press, Philadelphia, PA, 1928), Vol. 2, pp. 629–630

  88. M.A. Michael, The iconography of kingship in the Walter De Milemete treatise, J. Warburg Courtauld Institutes 57, 35–47 (1994)

    Article  Google Scholar 

  89. C. Haeussermann, Gedächtnisrede auf Christian Friedrich Schönbein [Referat], Z. Ges. Schieß- u. Sprengstoffwesen 4, 433–434 (1909)

    Google Scholar 

  90. G.W. Cullum, Biographical register of the officers and graduates of the US Military Academy at West Point from 1802–1890 (Houghton Mifflin, Boston, 1891), Vol. II, pp. 66–71

  91. A. Nobel, Improvements in the manufacture of explosives, Brit. Patent No. 1471 (1888)

  92. F.A. Abel, J. Dewar, Perfectionnement dans les munitions de guerre, Swiss Patent No. 1189 (1889)

  93. P. Woulfe, Experiments on a new colouring substance from the island of Amsterdam in the South Sea, Philos. Trans. Roy. Soc. Lond. 64, 91–93 (1775)

    Google Scholar 

  94. E.C. Howard, On a new fulminating mercury, Philos. Trans. Roy. Soc. Lond. 90, 204–238 (1800)

    Article  Google Scholar 

  95. P.L. Dulong , Mémoire sur une nouvelle substance détonante, Annal. Chim. 86, 37–43 (1813)

    Google Scholar 

  96. A. Sobrero, Sur plusieurs composés détonants produits avec l’acide nitrique et le sucre, la dextrine, la lactine, la marnite, et la glycérine, C. R. Acad. Sci. Paris 25, 247–248 (1847)

    Google Scholar 

  97. A. Nobel, Explosive compounds, Brit. Patent No. 1345 (1867)

  98. A. Nobel, Exploding compounds, Brit. Patent No. 4179 (1875)

  99. W. Michler, C. Meyer, Verhalten von Sulfochloriden zu Aminen. III. Mittheilung, Ber. Dt. Chem. Gesell. 12, 1791–1793 (1879)

    Article  Google Scholar 

  100. R.S. Penniman, Protected nitrate of ammonia for use in explosive compounds, US Patent No. 312010 (1885)

  101. T. Curtius, Über Stickstoffwasserstoffsäure (Azoimid) N3H, Ber. Dt. Chem. Gesell. 23, 3023–3033 (1890)

    Article  Google Scholar 

  102. T. Curtius, Neues vom Stickstoffwasserstoff, Ber. Dt. Chem. Gesell. 24, 3341–3349 (1891)

    Article  Google Scholar 

  103. C. Haeussermann, Über die explosiven Eigenschaften des Trinitrotoluols, Z. Angew. Chem. 4, 508–511 (1891)

    Article  Google Scholar 

  104. B.C.G. Tollens, P. Wiegand, Über den Penta-Erythrit, einen aus Formaldehyd und Acetaldehyd synthetisch hergestellten 4–wertigen Alkohol, Justus Liebig’s Ann. Chem. 265, 316–340 (1891)

    Article  Google Scholar 

  105. H. Goldschmidt, Verfahren zur Herstellung von Metallen oder Metalloiden oder Legierungen derselben, Germ. Patent No. 96317 (1895)

  106. G.F. Henning, Verfahren zur Darstellung eines Nitrokörpers aus Hexamethylentetramin, Germ. Patent No. 104280 (1898)

  107. A.H. Smyth, The writings of Benjamin Franklin (Haskell House Publ., New York, 1970), Vol. II, pp. 423–426

  108. J.C. Wilcke, Des Herrn Benjamin Franklin’s Esq. Briefe von der Electricität (Kiesewetter, Leipzig, 1758)

  109. Forsyth, Alexander John, Encyclopaedia Britannica, Micropaedia, Vol. IV, p. 237 (1974)

  110. F. Pflug, Nikolaus Von Dreyse und die Geschichte des preußischen Zündnadelgewehrs (Haude & Spener, Berlin, 1866)

  111. W. Bickford, Safety fuze for igniting gunpowder used in blasting rocks, &, Brit. Patent No. 6159 (1831)

  112. A. Nobel, Nitroglycerine, Brit. Patent No. 1813 (1864)

  113. J.H. Norrbin, J. Ohlsson, Sätt och medel för tillblandning af sprängämnen samt för deras förvaring och antändning (“Methods and means for mixing explosives and their storage and ignition”), Swed. Patent No. 188 (1867)

  114. F.A. Abel , On colliery explosions, Chem. News 44, 16–18; 27–31; 39–42 (1881)

    Google Scholar 

  115. J.D. Kinley, Call Kinley. Adventures of an oil well firefighter (Cock-A-Hoop Publ., Tulsa, OK, 1995), pp. 16–20

  116. Oil springs in Canada, The Practical Mechanic’s J. 2 [III], 323 (1867)

  117. A brief introduction and history of oil well shooting in the United States was provided by Analog Service Inc., Fordsville, KY (2000); see http://www.logwell.com

  118. H. Barnes, Some physical properties of icebergs and a method for their destruction, Proc. Roy. Soc. Lond. A 114, 161–168 (1927)

    Article  ADS  Google Scholar 

  119. R. Mallet, Second report on the facts of earthquake phenomena, Rept. Meet. Brit. Assoc. 21, 272–320 (1851)

    Google Scholar 

  120. R. Mallet, Account of experiments made at Holyhead (North Wales) to ascertain the transit-velocity of waves, analogous to earthquake waves, through the local rock formations, Philos. Trans. Roy. Soc. Lond. 151, 655–679 (1861)

    Article  Google Scholar 

  121. R. Mallet , Philos. Trans. Roy. Soc. Lond. 152, 663–676 (1862)

    Article  Google Scholar 

  122. H.L. Abbot, On the velocity of transmission of earth waves, Am. J. Sci. 15, 178–184 (1878)

    Google Scholar 

  123. W.E. Parry, Journal of the third voyage for the discovery of a North-West Passage from the Atlantic to the Pacific; performed in the years 1824–1825, in His Majesty’s ships “Hecla” and “Fury”, under the orders of W.E. Parry (J. Murray, London, 1826), see Experiments to determine the rate at which sound travels at various temperatures and pressures of the atmosphere, Appendix, p. 86

  124. M. Mersenne, De l’utilité de l’harmonie (S. Cramoisy, Paris, 1636), p. 44

  125. E. Mach, L. Mach, Über die Interferenz von Schallwellen von großer Excursion, Sitzungsber. Akad. Wiss. Wien 98, 1333–1336 (1889)

    Google Scholar 

  126. B. Robins, New principles of gunnery (J. Nourse, London, 1742), republ. by Richmond Publ. Co., Richmond, Surrey, UK (1972)

  127. E. Mach, P. Salcher, Photographische Fixierung der durch Projectile in der Luft eingeleiteten Vorgänge, Sitzungsber. Akad. Wiss. Wien 95, 764–780 (1887)

    Google Scholar 

  128. T. von Kármán, N.B. Moore, The resistance of slender bodies moving with supersonic velocities with special reference to projectiles, Trans. ASME 54, 303–310 (1932)

    Google Scholar 

  129. E. Mach , P. Salcher , Über die in Pola und Meppen angestellten ballistisch-photographischen Versuche, Sitzungsber. Akad. Wiss. Wien 98 (IIa), 41–50 (1889)

    Google Scholar 

  130. A.J.C. de Saint-Venant, P.L. Wantzel, Mémoire et expériences sur l’écoulement de l’air, J. Ecole Polytech. (Paris) 16, 85–122 (1839)

    Google Scholar 

  131. P. Salcher , J. Whitehead , Über den Ausfluß stark verdichteter Luft. Sitzungsber, Akad. Wiss. Wien 98 (IIa), 267–287 (1889)

    Google Scholar 

  132. C.G.P. de Laval, Turbine, Swed. Patent No. 325 (1883)

  133. C.G.P. de Laval, Steam inlet channel for rotating steam engines, Swed. Patent No. 1902 (1888)

  134. L. Mach , Weitere Versuche über Projektile, Sitzungsber. Akad. Wiss. Wien 105 (IIa), 605–633 (1896)

    Google Scholar 

  135. L. Mach , Optische Untersuchung der Luftstrahlen, Sitzungsber. Akad. Wiss. Wien 106 (IIa), 1025–1074 (1897)

    Google Scholar 

  136. A. Fliegner , Noch einmal die Düse der De Laval’schen Dampfturbine, Schweiz. Bauz. XLI, 175–177 (1903)

    Google Scholar 

  137. A. Fliegner , Beiträge zur Dynamik der elastischen Flüssigkeit, Schweiz. Bauz. XLVII, 30–32; 41–46; 103–110 (1906)

    Google Scholar 

  138. L. Prandtl, Über stationäre Wellen in einem Gasstrahl, Physik. Z. 5, 599–601 (1904)

    Google Scholar 

  139. L. Prandtl, Beiträge zur Theorie der Dampfströmung durch Düsen, VDI-Z. 48, 348–350 (1904)

    Google Scholar 

  140. L. Prandtl, Neue Untersuchungen über die strömende Bewegung der Gase und Dämpfe, Physik. Z. 8, 23–30 (1907)

    Google Scholar 

  141. T. Meyer, Über zweidimensionale Bewegungsvorgänge in einem Gas, das mit Überschallgeschwindigkeit strömt (Ph.D. thesis, University of Göttingen, 1908)

  142. Deutsche Waffen- und Munitionsfabrik (DWM), Berlin: Spitzgeschoß für Handfeuerwaffen, Germ. Patent No. 204660 (1908)

  143. G.B. Airy , The Astronomer Royal’s remarks on Prof. Challis’ theoretical determination of the velocity of sound, Philos. Mag. 32 [III], 339–343 (1848)

    Google Scholar 

  144. J. Challis , Theoretical determination of the velocity of sound, Philos. Mag. 32 [III], 276–284 (1848)

    Google Scholar 

  145. J. Challis , On the velocity of sound, in reply to the remarks of the Astronomer Royal, Philos. Mag. 32 [III], 494–499 (1848)

    Google Scholar 

  146. G.G. Stokes , On a difficulty in the theory of sound, Philos. Mag. 33 [III], 349–356 (1848)

    Google Scholar 

  147. S. Earnshaw, On the mathematical theory of sound, Philos. Trans. Roy. Soc. Lond. 150, 133–148 (1860)

    Article  Google Scholar 

  148. B. Riemann , Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abhandl. Königl. Gesell. Wiss. Gött. 8 [Math.-Physik. Kl.], 243–265 (1860)

    Google Scholar 

  149. W.J.M. Rankine, On the thermodynamic theory of waves of finite longitudinal disturbance, Philos. Trans. Roy. Soc. Lond. 160, 277–286 (1870)

    Article  Google Scholar 

  150. P.H. Hugoniot, Mémoire sur la propagation du mouvement dans les corps et plus spécialement dans les gaz parfaits. 1èrePartie, J. Ecole Polytech. (Paris) 57, 3–97 (1887)

    Google Scholar 

  151. P.H. Hugoniot, Mémoire sur la propagation du mouvement dans les corps et plus spécialement dans les gaz parfaits. 2e Partie, J. Ecole Polytech. (Paris) 58, 1–125 (1889)

    Google Scholar 

  152. P. Vieille, Sur les discontinuités produites par la détente brusque des gaz comprimés, C. R. Acad. Sci. Paris 129, 1228–1230 (1899)

    Google Scholar 

  153. P. Vieille, Étude sur le rôle des discontinuités dans les phénomènes de propagation, Mém. Poudres Salpêtres 10, 177–260 (1900)

    Google Scholar 

  154. P. Vieille, Étude des pressions ondulatoires produites en vase clos par les explosifs, Mém. Poudres Salpêtres 3, 177–236 (1890)

    Google Scholar 

  155. T.E. Stanton, The development of a high-speed wind tunnel for research in external ballistics, Proc. Roy. Soc. Lond. A 131, 122–132 (1931)

    Article  ADS  Google Scholar 

  156. D.L. Chapman, On the rate of explosion in gases, Philos. Mag. 47, 90–104 (1899)

    Google Scholar 

  157. J.C.E. Jouguet, Sur l’onde explosive, C. R. Acad. Sci. Paris 139, 121–124 (1904)

    Google Scholar 

  158. J.C.E. Jouguet, Sur la propagation des réactions chimiques dans les gaz, J. Math. Pures Appl. 1, 347–425 (1905)

    Google Scholar 

  159. J.C.E. Jouguet , J. Math. Pures Appl. 2 [VI], 5–86 (1906)

    Google Scholar 

  160. V.A. Mikhel’son, On the normal ignition velocity of explosive gaseous mixtures [in Russ.], Ph. D. thesis. Moscow University Printing Service, Moscow (1890); republ. in: Scient. Papers of the Moscow Imperial University on Mathematics & Physics 10, pp. 1–93 (1893)

  161. K.I. Shchelkin, Y.K. Troshin, Gasdynamics of combustion [in Russ.], Izd. Akad. Nauk SSSR, Moskva (1963)

  162. R. Mallet, Account of experiments made at Holyhead (North Wales) to ascertain the transit-velocity of waves, analogous to earthquake waves, through the local rock formations, Philos. Trans. Roy. Soc. Lond. 151, 655–679 (1860)

    Google Scholar 

  163. H. Schardin, Die Schlierenverfahren und ihre Anwendungen, Ergebn. Exakt. Naturwiss. 20, 303–349 (1942)

    Article  Google Scholar 

  164. D.W. Holder, R.J. North, A schlieren apparatus giving an image in color, Nature 169, 466 (1952)

    Article  ADS  Google Scholar 

  165. D.W. Holder, R.J. North, Colour in the wind-tunnel, The Aeroplane 82 (1952)

  166. D.W. Holder, R.J. North, Optical methods for examining the flow in high-speed wind tunnels, AGARDograph No. 23 (AGARD NATO, Paris, 1956)

  167. D. Gabor, Holography, 1948–1971 [Nobel Lecture, presented on Dec. 11, 1971], see http://www.nobel.se/physics/laureates/1971/gabor-lecture.pdf

  168. R.D. Buzzard, Description of three-dimensional schlieren system, In: Proc. 8th Int. Congress on High-Speed Photography, Stockholm, Sweden, 1968 (Almquist & Wiksell, Stockholm, 1968), edited by N.R. Nillson, L. Högberg, pp. 335–340

  169. R.E. Brooks, L.O. Heflinger, R.F. Wuerker, Holographic photography of high-speed phenomena with conventional and Q-switched ruby lasers, Appl. Phys. Lett. 7, 92–94 (1965)

    Article  ADS  Google Scholar 

  170. R.E. Brooks, L.O. Heflinger, R.F. Wuerker, Pulsed laser holograms, IEEE J. Quant. Electron. 8, 275–279 (1966)

    Article  ADS  Google Scholar 

  171. W. Lauterborn, K. Hinsch, F. Bader, Holography of bubbles in water as a method to study cavitation bubble dynamics, Acustica 26, 170–171 (1972)

    Google Scholar 

  172. E.A. Feoktistova, Experimental observation of Mach reflection of detonation waves in a solid explosive, Sov. Phys. Dokl. 6, 162–163 (1961)

    ADS  Google Scholar 

  173. G.R. Fowles, W.M. Isbell, Method for Hugoniot equation-of-state measurements at extreme pressures, J. Appl. Phys. 36, 1377–1379 (1965)

    Article  ADS  Google Scholar 

  174. P.S. Theocaris, E. Marketos, W. Gillich, Shock wave propagation in Perspex spheres, Int. J. Mech. Sci. 8, 739–742 (1966)

    Article  Google Scholar 

  175. M. Kawahashi, H. Hirahara, Velocity and density field measurements by digital speckle method, Opt. Laser Technol. 32, 575–582 (2000)

    Article  ADS  Google Scholar 

  176. J.C. Maxwell, On the equilibrium of elastic solids, Trans. Roy. Soc. Edinb. 20, 87–120 (1850)

    Google Scholar 

  177. R.A. East, Application of liquid crystal surface thermography to hypersonic flow, In: Proc. 18th Int. Symposium on Shock Waves, Sendai, Japan, 1991 (Springer, Berlin etc., 1992), edited by K. Takayama, pp. 643–650

  178. E.J. Klein, Application of liquid crystals to boundary layer flow, AIAA 3rd Aerodynamic Testing Conference – Separate Papers (San Francisco, CA, April 1968); see AIAA Paper No. 68-0376 (1968)

  179. V.P. Goddard, J.A. McLaughlin, F.N.M. Brown, A visual supersonic flow by means of smoke lines, J. Aerospace Sci. 26, 761–762 (1959)

    Google Scholar 

  180. J.M. Dewey, The properties of a blast wave obtained from an analysis of the particle trajectories, Proc. Roy. Soc. Lond. A 324, 275–299 (1971)

    Article  ADS  Google Scholar 

  181. R. Schall, Die Zustandsgleichung des Wassers bei hohen Drucken nach Röntgenblitzaufnahmen intensiver Stoßwellen, Z. Angew. Phys. 2, 252–254 (1950)

    Google Scholar 

  182. R. Schall, G. Thomer, Röntgenblitzaufnahmen von Stoßwellen in festen, flüssigen und gasförmigen Medien, Z. Angew. Phys. 3, 41–44 (1951)

    Google Scholar 

  183. K.H. Herrmann, Röntgenblitzuntersuchungen an Funkenstoßwellen in Gasen, Z. Angew. Phys. 10, 349–356 (1958)

    Google Scholar 

  184. R. Schall, Feinstrukturaufnahmen in ultrakurzen Zeiten mit dem Röntgenblitzrohr, Z. Angew. Phys. 2, 83–88 (1950)

    Google Scholar 

  185. F. Jamet, G. Thomer, Diagramme de Laue en radiographie instantanée, C. R. Acad. Sci. B 271, 714–717 (1970)

    Google Scholar 

  186. Q. Johnson, A. Mitchell, R.N. Keeler, L. Evans X-ray diffraction during shock-wave compression, Phys. Rev. Lett. 25, 1099–1101 (1970)

    Article  ADS  Google Scholar 

  187. F. Jamet, G. Thomer, Enregistrement de diagrammes de diffraction par impulsions de rayons X de matériaux soumis à une compression par onde de choc, In: Proc. 10th Int. Congress on High-Speed Photography, Nice, France, 1972, edited by E. Laviron (ANRT, Paris, 1973), pp. 292–294

  188. Q. Johnson, A. Mitchell, First X-ray diffraction evidence for a phase transition during shock-wave compression, Phys. Rev. Lett. 29, 1369–1371 (1972)

    Article  ADS  Google Scholar 

  189. F. Jamet, G. Thomer, Diagramme de poudre d’un jet de charge creuse, C. R. Acad. Sci. Paris 279, 501–503 (1974)

    Google Scholar 

  190. R.E. Green Jr., First X-ray diffraction photograph of a shaped charge jet, Rev. Sci. Instrum. 46, 1257–1261 (1975)

    Article  ADS  Google Scholar 

  191. J.S. Wark, R.R. Whitlock, A.A. Hauer, J.E. Swain, Sub-nanosecond X-ray diffraction from laser-shocked crystals, Phys. Rev. B 40, 5705–5714 (1989)

    Article  ADS  Google Scholar 

  192. R.E. Duff, E. Houston, Measurement of the Chapman-Jouguet pressure and reaction zone length in a detonating high explosive, In: Proc. 2nd Symposium (ONR) on Detonation [White Oak, MD, 1953], edited by L.D. Hampton, J. Savitt, L.E. Starr. Rept. AD-052 145, Office of Naval Research (ONR), Arlington, VA (1955), pp. 225–239

  193. R.E. Duff, E. Houston, J. Chem. Phys. 23, 1268–1273 (1955)

    Article  ADS  Google Scholar 

  194. R.W. Goranson et al., Dynamic determination of the compressibility of metals, J. Appl. Phys. 26, 1472–1479 (1955)

    Article  ADS  Google Scholar 

  195. S. Minshall, Properties of elastic and plastic waves determined by pin contactors and crystals, J. Appl. Phys. 26, 463–469 (1955)

    Article  ADS  Google Scholar 

  196. D.L. Schultz, T.V. Jones, Heat transfer measurements in short duration hypersonic facilities. AGARDograph No. 165 (1973)

  197. J.D. Barnett, S. Block, G.J. Piermarini, An optical fluorescence system for quantitative pressure measurement in the diamond-anvil cell, Rev. Sci. Instrum. 44, 1–9 (1973)

    Article  ADS  Google Scholar 

  198. A.T. Nielsen, Polycyclic amine chemistry. In: Chemistry of energetic materials, edited by G.A. Olah, D.R. Squire (Academic Press, San Diego, CA, 1991), pp. 95–124

  199. M.X. Zhang, P.E. Eaton, R. Gilardi, Hepta- and octanitrocubanes, Angew. Chem. Int. Ed. 39, 401–404 (2000)

    Article  Google Scholar 

  200. C.E. Ragan III, M.G. Silbert, B.C. Diven, Shock compression of molybdenum to 2.0 TPa by means of a nuclear explosion, J. Appl. Phys. 48, 2860–2870 (1977)

    Article  ADS  Google Scholar 

  201. R.F. Trunin et al., Measurement of the compressibility of iron at 5.5 TPa, Sov. Phys. JETP 75, 777–780 (1992)

    Google Scholar 

  202. R.F. Trunin et al., Determination of the shock compressibility of iron at pressures up to 10 TPa (100 Mbar), Sov. Phys. JETP 76, 1095–1098 (1993)

    ADS  Google Scholar 

  203. R.F. Trunin et al., Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions, Phys. Uspekhi 37, 1123–1145 (1994)

    Article  ADS  Google Scholar 

  204. A.F. Belajev, The production of detonation in explosives under the action of a thermal pulse [in Russ.], Dokl. AN (SSSR) 18, 267–269 (1938)

    Google Scholar 

  205. L.H. Johnston, Electric initiator with exploding bridge wire, US Patent No. 3040660 (filed Nov. 8, 1944, applied June 26, 1962)

  206. M. Held, Schutzeinrichtung gegen Geschosse, Germ. Patent No. 2053345 (issued Oct. 1970, publ. Feb. 1977)

  207. C.E. Munroe, On certain phenomena produced by the detonation of gun-cotton, Proc. Newport Natl. Hist. Soc. Rept. No. 6 (1883–1888)

  208. C.E. Munroe, Wave-like effects produced by the detonation of gun-cotton, Am. J. Sci. 36, 48–50 (1888)

    Google Scholar 

  209. K. Butter, O. Butter, Niet, dessen Schließkopf durch Verformung mittels Sprengung gebildet wird, Germ. Patent No. 655669 (1935)

  210. L.R. Carl, Brass welds, made by detonation impulse, Metal Progress 46, 102–103 (1944)

    Google Scholar 

  211. L.A. Jutkin, The electrohydraulic effect [in Russ.] (Masgiz, Moskva, 1955)

  212. G. Nesvetailov, E. Serebriakov, Theory and practice of the electrohydraulic effect [in Russ.] (INTIP, Minsk, 1966)

  213. F.P. Bundy et al., Man-made diamonds, Nature 176, 2–7 (July 9, 1955)

    Article  Google Scholar 

  214. F.P. Bundy et al., Direct conversion of graphite to diamond in static pressure apparatus, Science 137, 1057–1058 (1962)

    Article  ADS  Google Scholar 

  215. F.P. Bundy et al., Direct conversion of graphite to diamond in static pressure apparatus, J. Chem. Phys. 38, 631–643 (1963)

    Article  ADS  Google Scholar 

  216. P.S. DeCarli, J.C. Jamieson, Formation of diamond by explosive shock, Science 133, 1821–1822 (1961)

    Article  ADS  Google Scholar 

  217. N.R. Greiner, D.S. Phillips, J.D. Johnson, F. Volk, Diamonds in detonation soot, Nature 433, 440–442 (1988)

    Article  ADS  Google Scholar 

  218. E.W. La Rocca, J. Pearson, High pressure, explosive-activated press, US Patent No. 2948923 (1953)

  219. E.W. La Rocca , J. Pearson, Explosive press for use in impulsive loading studies, Rev. Sci. Instrum. 29, 848–851 (1958)

    Article  ADS  Google Scholar 

  220. B.M. Butcher, C.H. Karnes, Dynamic compaction of porous iron, J. Appl. Phys. 40, 2967–2976 (1969)

    Article  ADS  Google Scholar 

  221. R.A. Prümmer, Explosive compaction of powders and composites (Science Publishers, Enfield, NH, 2006)

  222. K. Takashima et al., Preparation of oxide superconducting coils by explosive compaction. edited by S.C. Schmidt, L.W. Davison, In: Proc. 6th APS Topical Conference on Shock Compression of Condensed Matter, Albuquerque, NM, 1989 (North-Holland, Amsterdam etc., 1990), pp. 591–594

  223. M.B. Solomon, Dynamite recipe for tenderizing and sanitizing meat, USDA Beltsville Area Distinguished Lecture Series, US Dept. of Agriculture (USDA); http://www.ba.ars.usda.gov/lectures2003/solomon.html

  224. Is it practical to destroy icebergs before they reach the shipping lanes?Int. Ice Patrol, US Coast Guard R&D Center, Groton, CT; http://www.uscg.mil/LANTAREA/IIP/FAQ/ReconnOp_5.shtml

  225. K. König, I. Riemann, P. Fischer, K.J. Halbhuber, Intracellular nanosurgery with near infrared femtosecond laser pulses, Cell. Mol. Biol. 45, 195–201 (1999)

    Google Scholar 

  226. M. Delius et al., Tumor therapy with shock waves requires modified lithotripter shock waves, Naturwissenschaften 76, 573–574 (1989)

    Article  ADS  Google Scholar 

  227. K. Lee et al., High energy shock waves enhance anti-tumor activity of cisplatin (DDP) murine bladder cancer (MBT-2), J. Urology 139, 326A (1988)

    Google Scholar 

  228. R.F. Randazzo et al., The in vitro and in vivo effects of extracorporeal shock waves on malignant cells, Urol. Res. 16, 419–426 (1988)

    Article  Google Scholar 

  229. A.A. Geldorf, H.J. Voogt, B.R. Rao, High energy shock waves do not affect either primary tumor growth or metastasis of prostate carcinoma, Urol. Res. 17, 9–12 (1989)

    Google Scholar 

  230. G. Robinson , On the disintegration of urinary calculi by the lateral disruptive force of the electrical discharge, Proc. Roy. Soc. Lond. 7, 99–102 (1854/1855)

    Article  Google Scholar 

  231. V. Goldberg , Zur Geschichte der Urologie: Eine neue Methode der Harnsteinzertrümmerung – elektrohydraulische Lithotripsie, Der Urologe 19 [B], 23–27 (1979)

    Google Scholar 

  232. W. Eisenmenger, Elektromagnetische Erzeugung von ebenen Druckstößen in Flüssigkeiten, In: Proc. 3rd Int. Congress on Acoustics, Stuttgart, Germany, 1959, edited by L. Cremer (Elsevier, Amsterdam, 1961), Part I, pp. 326–329

  233. W. Eisenmenger, Elektromagnetische Erzeugung von ebenen Druckstößen in Flüssigkeiten, Acustica 12, 185–202 (1962)

    Google Scholar 

  234. E. Häussler, W. Kiefer, Nierensteinzertrümmerung mit geführten Stoßwellen, Annales Universitatis Saraviensis 11, 150–159 (1974)

    Google Scholar 

  235. C. Chaussy , W. Brendel , E. Schmiedt , Extracorporeally induced destruction of kidney stones by shock waves, The Lancet 316, No. 8207, 1265–1268 (1980)

    Article  Google Scholar 

  236. C.A. Puliafito , D. Stern , R.R. Krueger , E.R. Mandel , High-speed photography of excimer laser ablation of the cornea, Arch. Ophthalmol. 105, No. 9, 1255–1259 (1987)

    Google Scholar 

  237. L. Gerdesmeyer (ed.), Extrakorporale Stoßwellentherapie, Books on Demand, Norderstedt (2004); Extracorporeal shock wave therapy: technologies, basics, clinical results (Data Trace Publ., Towson, MD, 2007)

  238. S. Lee, D.J. McAuliffe, T. Kodama, A.G. Doukas, In vivo transdermal delivery using a shock tube, Shock Waves 10, 307–311 (2000)

    Article  ADS  Google Scholar 

  239. G. Jagadeesh, K. Takayama, Novel applications of micro-shock waves in biological sciences, J. Indian Inst. Sci. 82, 1–10 (2002)

    Google Scholar 

  240. E. Powers, War and the weather (E. Powers, Delavan, WI, 1890)

  241. Meteorology: explosions make it rain, Nature 227, 995 (1970)

  242. G.G. Goyer, Mechanical effects of a simulated lightning discharge on the water droplets of ‘Old Faithful’ Geyser, Nature 206, 1302–1304 (1965)

    Article  ADS  Google Scholar 

  243. K. Harper, Weather and climate: decade by decade (Facts on File, New York, 2007), p. 98

  244. R.H. Scott, W. Galloway, The connection between colliery explosions and weather, Nature 5, 504 (1872)

    Article  Google Scholar 

  245. E.K. Fedorov, On the influence of atomic explosions on meteorological processes, J. Nucl. Energy 5, 135–145 (1954)

    Google Scholar 

  246. I.R. Hurle, A. Hertzberg, Electronic population inversions by fluid-mechanical techniques, Phys. Fluids 8, 1601–1607 (1965)

    Article  ADS  Google Scholar 

  247. J.D. Anderson Jr., Gasdynamic lasers: an introduction (Academic Press, New York etc., 1976)

  248. S.C. Rashleigh, R.A. Marshall, Electromagnetic acceleration of macroparticles to high velocities, J. Appl. Phys. 49, 2540–2542 (1978)

    Article  ADS  Google Scholar 

  249. High Energy Research and Technology Facility, FAS; see http://www.fas.org/spp/military/program/asat/herft.htm

  250. L.N. Myrabo, Transatmospheric laser propulsion: lightcraft technology demonstrator, Final Tech. Rept, SDIO Laser Propulsion Program, Contract No. 2073803 (1989), pp. 117–142

  251. L.N. Myrabo, Highways of light, Sci. Am. 280, 68–69 (1999)

    Article  Google Scholar 

  252. J. von Neumann, Oblique reflection of shocks. Navy Dept., Bureau of Ordnance, Explosives Res. Rept. No. 12, Washington, DC (Oct. 1943)

  253. J. von Neumann, R.D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys. 21, 232–237 (1950)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  254. R. Courant, K. Friedrichs, H. Léwy, Über die partiellen Differentialgleichungen der mathematischen Physik, Math. Ann. 100, 32–74 (1928)

    Article  MATH  MathSciNet  Google Scholar 

  255. J. Barnes, The complete works of Aristotle (Bollingen Series LXXI, Princeton University Press, Guildford, Surrey, 1984)

  256. L.A. Seneca, Naturales quaestiones [Books I-III]; Engl. translation by T.H. Corcoran, The Loeb Classical Library, Vol. 7 (Harvard University Press, Cambridge, MA, 1999)

  257. C. Adam, Oeuvres de Descartes (Nouvelle édition, Vrin, Paris, 1996), Vol. 6: Discours de la méthode & essais, pp. 315–316

  258. M. Mersenne, Cogitata physico-mathematica (A. Bertier, Paris, 1644); see Phenomena ballistica, Propositio XXXV, pp. 138–140

  259. E. Mariotte, Harmonie universelle, contenant la théorie et la pratique de la musique. Livre VIII : Traité du mouvement des eaux et des autres corps fluides (E. Michallet, Paris, 1686)

  260. C.M.V. Montigny, Note sur la vitesse du bruit du tonnerre, Bull. Acad. Sci. Brux. IX, 36–46 (1860)

    Google Scholar 

  261. C.M.V. Montigny, Observations sur l’accélération de la vitesse du bruit du tonnerre, Bull. Acad. Sci. Brux. X, 62–63 (1860)

    Google Scholar 

  262. F. Raillard, Sur le bruit du tonnerre, Cosmos (Paris) 16, 373–374 (1860)

    Google Scholar 

  263. F. Raillard , Du bruit du tonnerre, de ses variations ou de ses roulements, de sa vitesse &. Cosmos (Paris) 17, 166–172; 675–677 (1860)

    Google Scholar 

  264. M.A. Uman, A.H. Cookson, J.B. Moreland, Shock wave from a four-meter spark, J. Appl. Phys. 41, 3148–3155 (1970)

    Article  ADS  Google Scholar 

  265. H.E. Bass, The propagation of thunder through the atmosphere, JASA 67, 1959–1966 (1980)

    Google Scholar 

  266. H.E. Bass, Atmospheric acoustics, edited by G.L. Trigg, In: Encyclopedia of applied physics (VCH, New York etc., 1991), Vol. 2, pp. 145–179

  267. L.M. Weinstein, An optical technique for examining aircraft shock wave structures in flight, Proc. 3rd High-Speed Research Program Sonic Boom Workshop (Hampton, VA, 1994). Published in High-speed research: 1994 Sonic Boom Workshop – Atmospheric propagation and acceptability studies (Rept. NASA CP 3279, 1994), edited by D.A. McCurdy, pp. 1–17

  268. B. Bernstein, D.A. Hall, H.M. Trent, On the dynamics of a bull whip, JASA 30, 1112–1115 (1958)

    Google Scholar 

  269. P. Krehl, S. Engemann, D. Schwenkel, The puzzle of whip cracking – uncovered by a correlation of whip-tip kinematics with shock wave emission, Shock Waves 8, 1–9 (1998)

    Article  ADS  MATH  Google Scholar 

  270. R. Noble, D. Tremayne, Thrust: through the sound barrier (Bantam, Sydney and London, 1999)

  271. C. Chaussy, F. Eisenberger, K. Wanner, The use of shock waves for the destruction of renal calculi without direct contact, Urological Res. 4, 181 (1976)

    Google Scholar 

  272. B.H. Pandya, G.S. Settles, J.D. Miller, Schlieren imaging of shock waves from a trumpet, JASA 114, 3363–3367 (2003)

    Google Scholar 

  273. D.R. White, An experimental survey of the Mach reflection of shock waves, Tech. Rept. II-10, Dept. of Physics (Princeton University, NJ, 1951)

  274. E. Jacobs, Methods employed in America for the experimental investigation of aerodynamic phenomena at high speeds, V Convegno Volta su “Le alte velocità in aviazione” [Rome, Italy, Sept./Oct. 1935] (Reale Accademia d’Italia, Roma, 1936), pp. 369–401

  275. R.P. Hallion, Supersonic flight: the story of the Bell X-1 and Douglas D-558 (Macmillan, New York, 1972)

  276. A. Busemann, Aerodynamischer Auftrieb bei Überschallgeschwindigkeit. In: V Convegno Volta su “Le alte velocità in aviazione” [Rome, Italy, Sept./Oct. 1935] edited by G.A. Crocco (Reale Accademia d’Italia, Roma, 1936), pp. 328–360

  277. A. Busemann , Luftfahrtforsch. 12, 210–220 (1935)

    Google Scholar 

  278. L. Prandtl, Allgemeine Überlegungen über die Strömung zusammendrückbarer Flüssigkeiten, V Convegno Volta su “Le alte velocità in aviazione” [Rome, Italy, Sept./Oct. 1935] (Reale Accademia d’Italia, Roma, 1936), pp. 168–197; 215–221

  279. L. Prandtl , ZAMM 16, 129–142 (1936)

    Article  MATH  Google Scholar 

  280. W. Bleakney, D.K. Weimer, C.H. Fletcher, The shock tube: a facility for investigations in fluid dynamics, Rev. Sci. Instrum. 20, 807–815 (1949)

    Article  ADS  Google Scholar 

  281. W. Bleakney, A.H. Taub, Interaction of shock waves, Rev. Mod. Phys. 21, 584–605 (1949)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  282. C.E. Needham, Blast waves (Springer, Berlin & Heidelberg, 2010), pp. 293–294

  283. H.S. Glick, W. Squire, A. Hertzberg, A new shock tube technique for the study of high temperature gas phase reactions, Proc. 5th Int. Symposium on Combustion, Pittsburgh, PA, Aug./Sept. 1954 (Reinhold, New York, 1955), pp. 393–402

  284. A. Bar-Nun, N. Bar-Nun, S.H. Bauer, C. Sagan, Shock synthesis of amino acids in simulated primitive environments, Science 168, 470–473 (1970)

    Article  ADS  Google Scholar 

  285. P.P. Wegener, The Peenemünde wind tunnels. A memoir (Yale University Press, New Haven, CT etc., 1996), pp. 69–70.

  286. J.V. Becker, Results of recent hypersonic and unsteady flow research at the Langley Aeronautical Laboratory, J. Appl. Phys. 21, 619–628 (1950)

    Article  ADS  MATH  Google Scholar 

  287. P.P. Wegener, R.K. Lobb, NOL Hypersonic Tunnel No. 4 Results II: diffuser investigation, Rept. AD0895228 (NOL, White Oak, MD, 1952)

  288. A. Hertzberg , A shock tube method of generating hypersonic flows, J. Aeronaut. Sci. 18, 803–804; 841 (1951)

    Google Scholar 

  289. A.H. Taub , Relativistic Rankine-Hugoniot equations, Phys. Rev. 74 [II], 328–334 (1948)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  290. R. Mallick, Solving the relativistic Rankine-Hugoniot condition in presence of magnetic field in astrophysical scenario (Cornell University Library, Ithaca, NY, 2010); see http://arxiv.org/abs/1012.5341

  291. L.G. Smith, Photographic investigation of the reflection of plane shocks in air, Rept. OSRD-6271 (Palmer Physical Laboratory, Princeton University, NJ, 1945)

  292. K. Takayama, Shock wave reflection over wedges: a benchmark test for CFD and experiments, Shock Waves 7, 191–203 (1997)

    Article  ADS  MATH  Google Scholar 

  293. G.A. Askar’yan , E.M. Moroz, Pressure on evaporation of matter in a radiation beam, Sov. Phys. JETP 16, 1638–1639 (1963)

    ADS  Google Scholar 

  294. N.C. Holmes, Laser-generated shock waves and applications to advanced materials, NIRIM Int. Symposium on Advanced Materials 96 [Tsukuba, Japan, 1996], UCRL-JC-123211 (1996)

  295. A.H. Clauer et al., Effects of laser induced shock waves on metals. In: Shock waves and high-strain rate phenomena in metals, edited by M.A. Meyers, L.E. Murr (Plenum Publ. Co., New York, 1981), see Chap. 38

  296. R. Hofmann, R. Hartung, Laser-induced shock-wave lithotripsy of ureteric calculi, World J. Urology 7, 142–146 (1989)

    Article  Google Scholar 

  297. S.L. Trokel, R. Srinivasan, B. Braren, Excimer laser surgery of the corona, Am. J. Ophthalmol. 96, 710–715 (1983)

    Google Scholar 

  298. R. Srinivasan, Ablation of polymers and biological tissue by ultraviolet lasers, Science 234, 559–565 (1986)

    Article  ADS  Google Scholar 

  299. P.W. Bridgman, The compression of 39 substances to 100 000 kg/cm2, Proc. Am. Acad. Arts Sci. 76, 55–70 (1948)

    Google Scholar 

  300. J.H. Cook, Engraving on metal plates by means of explosives, Research (Lond.) 1, 474–477 (1948)

    Google Scholar 

  301. G.E. Duvall, G.R. Fowles, Shock waves, In: High Pressure Physics and Chemistry, edited by R.S. Bradley (Academic Press, New York, 1963), Vol. 2, pp. 209–291

  302. A.H. Jones, W.M. Isbell, C.J. Maiden, Measurement of the very-high-pressure properties of materials using a light-gas gun, J. Appl. Phys. 37, 3493–3499 (1966)

    Article  ADS  Google Scholar 

  303. P. Honoré, Es begann mit der Technik (DVA, Stuttgart, 1969)

  304. H.R. Hertz, Über die Berührung fester elastischer Körper und über die Härte, Verhandl. des Vereins zur Beförderung des Gewerbefleißes, Berlin 61, 449–463 (1882)

    Google Scholar 

  305. F. Kerkhof, H. Müller, Zur bruchmechanischen Deutung der Schlagmarken an Steingeräten, Glastech. Ber. 42, 439–448 (1969)

    Google Scholar 

  306. S. Winkler, D.A. Shockey, D.R. Curran, Crack propagation at supersonic velocities (Part I), Int. J. Fract. 6, 151–158 (1970)

    Article  Google Scholar 

  307. D.R. Curran, D.A. Shockey, S. Winkler, Theoretical model (Part II), Int. J. Fract. 6, 271–278 (1970)

    Article  Google Scholar 

  308. R.V. Gol’dshtein , N.P. Novikov, Supersonic crack propagation in blocks of polymethyl methacrylate, Mechanics of Composite Materials 7, 913–915 (1971)

    Google Scholar 

  309. A.J. Rosakis, O. Samudrala, D. Coker, Cracks faster than the shear wave speed, Science 284, 1337–1340 (1999)

    Article  ADS  Google Scholar 

  310. S. Hao, W.K. Liu, P.A. Klein, A.J. Rosakis, Modeling and simulation of intersonic crack growth, Int. J. Solids Structures 41, 1773–1799 (2004)

    Article  MATH  Google Scholar 

  311. M.J. Buehler, F.F. Abraham, H. Gao, Hyperelasticity governs dynamic fracture at a critical length scale, Nature 426, 141–146 (2003)

    Article  ADS  Google Scholar 

  312. M.J. Buehler, Atomistic modeling of materials failure (Springer, New York, 2008)

  313. F. Jamet, G. Thomer, Flash radiography (Elsevier, Amsterdam, 1976), p. 137

  314. Y.B. Zel’dovich , On the theory of the propagation of detonation in gaseous systems [in Russ.], Zh. Eksp. Teor. Fiz. (SSSR) 10, 542–568 (1940); Rept. NACA-TM 1261 (1950)

    Google Scholar 

  315. W. Döring, Zur Theorie der Detonation, Ber. Nr. 5a, Ball. Inst. Techn. Akad. Luftwaffe (TAL), Berlin-Gatow (1941)

  316. J. von Neumann, Theory of stationary detonation waves, Prog. Rept. OSRD-549 (1942)

  317. W. Döring, Die Detonationswelle, In: Beiträge zur Theorie der Detonation, edited by W. Döring, G. Burkhardt. ZWB LFA Forschungsber. Nr. 1939 (Berlin-Adlershof, 1944), pp. 155–196

  318. W.A. Bone, R.P. Fraser, V. Photographic investigation of flame movements in carbonic oxide – oxygen explosions, Philos. Trans. Roy. Soc. Lond. A 228, 197–234 (1929)

    Article  ADS  Google Scholar 

  319. W.A. Bone, R.P. Fraser, X. Photographic investigation of flame movements in gaseous explosions. Parts IV, V and VI, Philos. Trans. Roy. Soc. Lond. A 230, 363–385 (1932)

    Article  ADS  Google Scholar 

  320. LLNL’s Sci. & Tech. Rev. (April 1999); http://www.llnl.gov/str/Walter.html

  321. F. Dyson, Dynamic Universe, Nature 435, 1033 (2005)

    Article  ADS  Google Scholar 

  322. V.F. Hess , Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten, Sitzungsber. Akad. Wiss. Wien 121 (IIa), 2001–2032 (1912)

    Google Scholar 

  323. E. Fermi, On the origin of the cosmic radiation, Phys. Rev. 75, 1169–1174 (1949)

    Article  ADS  MATH  Google Scholar 

  324. History: ultrahigh energy cosmic rays. Telescope Array project, University of Utah, Salt Lake City, UT; see http://www.telescopearray.org/outreach/uhecr.html

  325. R. Naeye, Cosmic rays and supernova remnants, NASA Mission News (Aug. 28, 2008); see http://www.nasa.gov/mission_pages/GLAST/science/cosmic_rays.html

  326. Chandra discovers relativistic pinball machine, Chandra X-Ray Observatory News Release (2006); see http://spacespin.org/article.php/chandra-relativistic-pinball-machine

  327. V.P. Luchsinger, J. van Blois, Spin-offs from military technology: past and future, Int. J. Tech. Manag. 4, 21–29 (1989)

    Google Scholar 

  328. R.D. Richtmyer, Taylor instability in shock acceleration of compressible fluids, Tech. Rept. La-1914 (LASL, Los Alamos, NM, 1954)

  329. R.D. Richtmyer , Comm. Pure Appl. Math. 13, 297–319 (1960)

    Article  MathSciNet  Google Scholar 

  330. E.E. (Y.Y.) Meshkov , Instability of the interface of two gases accelerated by a shock wave [in Russ.], Izv. AN (SSSR) Mekhanika Zhidkosti i Gaza 4, 151–157 (1969)

    MathSciNet  Google Scholar 

  331. E.E. (Y.Y.) Meshkov , Instability of the interface of two gases accelerated by a shock wave, Sov. Fluid Dynamics 4, 101–104 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  332. F.H. Shelton, Reflections of a nuclear weaponeer (Shelton Enterprise, Colorado Springs, CO, 1988), Chap. 3, p. 36

  333. D.H. Parkinson, Defence research and civil spin-off, Phys. Technol. 18, 244–249 (1987)

    Article  ADS  Google Scholar 

  334. Y.B. Zel’dovich , On the possibility of rarefaction shock waves [in Russ.], Zh. Eksp. Teor. Fiz. (SSSR) 16, 363–364 (1946)

    Google Scholar 

  335. S.S. Kutateladze et al., Experimental detection of a rarefaction shock wave near a liquid-vapor critical point, Sov. Phys. Dokl. 25, 392–393 (1980)

    ADS  Google Scholar 

  336. Y.B. Zel’dovich, Y.P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena (Academic Press, New York, 1966–1967), see Vol. 2 (1967), pp. 757–762

  337. L.R. Veeser et al., Spall strength and shock release kinetics following the alpha-epsilon phase transition in iron. In: Physics Division progress report 1999–2000, edited by T. Heinrichs. Rept. LA-13970 (LANL, Los Alamos, NN), pp. 140–145

  338. H. Takabe et al., High-Mach number collisionless shock and photo-ionized non-local thermodynamic equilibrium plasma for laboratory astrophysics with intense lasers, Plasma Phys. Controlled Fusion 50, 124057 (2008)

    Article  ADS  Google Scholar 

  339. Ship wakes. European Space Agency (ESA), Earth Observation Applications, Earthnet Online; see http://earth.esa.int/applications/ERS-SARtropical/oceanic/shipwakes/intro/index.html

  340. Nuclear explosive and weapon safety program, DOE 5610.10 US Dept. of Energy, Washington, DC (Oct. 10, 1990), see http://www.fas.org/nuke/guide/usa/doctrine/doe/o5610_10.htm

  341. W. Menke, H. Abend, D. Bach, K. Newman, V. Levin, Review of the source characteristics of the Great Sumatra-Andaman Islands Earthquake of 2004, Surveys in Geophysics 27, 603–613 (2006)

    Article  ADS  Google Scholar 

  342. Military budget of the United States, see http://en.wikipedia.org/wiki/Military_budget of_the_United_States

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter O. K. Krehl.

Additional information

Dr. Krehl is a retired staff scientist from the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut (FhG-EMI) at Freiburg/Breisgau. Paper first presented at the First Joint European Symposium on the History of Physics, Pöllau Castle, Pöllau, Austria (May 28–29, 2010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krehl, P.O.K. Shock wave physics and detonation physics — a stimulus for the emergence of numerous new branches in science and engineering. EPJ H 36, 85–152 (2011). https://doi.org/10.1140/epjh/e2011-10037-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2011-10037-x

Keywords

Navigation