Skip to main content
Log in

Pascual Jordan’s legacy and the ongoing research in quantum field theory⋆

  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

Pascual Jordan’s path-breaking role as the protagonist of quantum field theory (QFT) is recalled and his friendly dispute with Dirac’s particle-based relativistic quantum theory is presented as the start of the field-particle conundrum which, though in modified form, persists up to this date. Jordan had an intuitive understanding that the existence of a causal propagation with finite propagation speed in a quantum theory led to radically different physical phenomena than those of QM. The conceptional-mathematical understanding for such an approach began to emerge only 30 years later. The strongest link between Jordan’s view of QFT and modern “local quantum physics” is the central role of causal locality as the defining principle of QFT as opposed to the Born localization in QM. The issue of causal localization is also the arena where misunderstandings led to a serious derailment of large part of particle theory e.g. the misinterpretation of an infinite component pointlike field resulting from the quantization of the Nambu-Goto Lagrangian as a spacetime quantum string. The new concept of modular localization, which replaces Jordan’s causal locality, is especially important to overcome the imperfections of gauge theories for which Jordan was the first to note nonlocal aspects of physical(not Lagrangian) charged fields. Two interesting subjects in which Jordan was far ahead of his contemporaries will be presented in two separate sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hoffmann, J. Ehlers, J. Renn, Pascual Jordan (1902–1980), Mainzer Symposium zum 100. Geburtstag. Max Planck Institute for History of Science, preprint 329 (2007)

  2. Bert Schroer, Pascual Jordan, Biographical notes, his contributions to quantum mechanics and his role as a protagonist of quantum field theory, in Hoffmann et al. (2007), 47–68

  3. Wolf D. Beiglböck, Ernst Pascual Jordan als Autor wissenschaftlicher und allgemeinbildender Schriften, pp. 145–206. in D. Hoffmann, J. Ehlers, J. Renn, Pascual Jordan (1902–1980), Mainzer Symposium zum 100. Geburtstag. Max Planck Institute for History of Science, preprint 329 (2007)

  4. Max Born, Werner Heisenberg, Pascual Jordan, Zur Quantenmechanik II, Zeitschrift für Physik 35, 557–615 (1926)

    ADS  Google Scholar 

  5. Albert Einstein, Zur Quantentheorie der Strahlung, Physikalische Zeitschrift 18, 121–128 (1917). English translation, in Van der Waerden (1968), 63–77

  6. Anthony Duncan, Michel Janssen, Pascual Jordan’s resolution of the conundrum of the wave-particle duality of light, arXiv:0709.3812

  7. Bert Schoer, The Einstein-Jordan conundrum and its relation to ongoing foundational research in local quantum physics, arXiv:1101.0569

  8. Pascual Jordan, O. Klein, Zum Mehrkörperproblem in der Quantentheorie, Zeitschrift für Physik 45, 751–765 (1927)

    Article  ADS  Google Scholar 

  9. Bert Schroer, Localization and the interface between quantum mechanics, quantum field theory and quantum gravity I (The two antagonistic localizations and their asymptotic compatibility), Studies in History and Philosophy of Modern Physics 41, 104–127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bert Schroer, Localization and the interface between quantum mechanics, quantum field theory and quantum gravity II (The search of the interface between QFT and QG), Studies in History and Philosophy of Modern Physics 41, 293–308 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bert Schroer, Bondi-Metzner-Sachs symmetry, holography on null-surfaces and area proportionality of “light-slice” entropy, Foundations of Physics 41, 204–241 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Pascual Jordan, Zur Theorie der Quantenstrahlung, Zeitschrift für Physik 30, 297–319 (1924)

    Article  ADS  Google Scholar 

  13. Albert Einstein, Bemerkungen zu P. Jordans: Zur Theorie der Quantenstrahlung, Zeitschrift für Physik 31, 784–785 (1925)

    Article  ADS  Google Scholar 

  14. W. Heitler, The quantum theory of radiation (Clarendon Press, Oxford, 1936)

  15. Eugene Paul Wigner, On unitary representations of the inhomogeneous Lorentz group, Ann. Math. 40, 149–204 (1939)

    Article  MathSciNet  Google Scholar 

  16. F. Coester, W.N. Polyzou, Relativistic quantum-mechanics of particles with direct interactions, Phys. Rev. D 26, 1348–1367 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  17. Steven Weinberg, What is Quantum Field Theory and what did we think it was? pp. 241–251, in Conceptual Foundations of Quantum Field Theory (ed. Tian Yu Cao, Cambridge University Press, 1999)

  18. Pascual Jordan, Kausalitaet und Statistik in der Modernen Physik, Die Naturwissenschaften 15, 105–110 (1927)

    Article  ADS  Google Scholar 

  19. H. Halvorson, Reeh-Schlieder defeats Newton-Wigner: on alternative localization schemes in quantum field theory, Philos. Sci. 68, 111–133 (2001)

    Article  MathSciNet  Google Scholar 

  20. Pascual Jordan, Wolfgang Pauli, Zur Quantenelektrodynamik ladungsfreier Felder, Zeitschrift für Physik 47, 151–173 (1928)

    Article  ADS  Google Scholar 

  21. Werner Heisenberg, Über die mit der Entstehung von Materie aus Strahlung verknüpften Ladungsschwankungen, Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig 86, 317–322 (1934)

    Google Scholar 

  22. W.H. Furry, J. Robert Oppenheimer, On the theory of the electron and positive, Phys. Rev. 45, 245–262 (1934)

    Article  ADS  MATH  Google Scholar 

  23. Bert Schroer, A critical look at 50 years particle theory from the perspective of the crossing property, Found. Phys. 40, 1800–1857 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. B. Bakamijan, L.H. Thomas, Relativistic particle dynamics II, Phys. Rev. 92, 1300–1310 (1953)

    Article  ADS  Google Scholar 

  25. F. Coester, Scattering theory for relativistic particles, Helvetica Phys. Acta 38, 7–28 (1965)

    MathSciNet  MATH  Google Scholar 

  26. N.S. Sokolov, Interacting relativistic particles, Doklady Akad. Nauk USSR 233, 575–592 (1977)

    Google Scholar 

  27. W.N. Polyzou, Equivalent Hamiltonians. Phys. Rev. C. 82, 014002 (2010)

    Article  ADS  Google Scholar 

  28. W.N. Polyzou, Cluster properties in relativistic quantum mechanics of N-particle systems, J. Math. Phys. 43, 6024–6038 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. S. Weinberg, The Quantum Theory of Fields I (Cambridge University Press, 1995)

  30. S.S. Schweber, QED and the men who made it (Dyson, Feynman, Schwinger and Tomonaga, Princeton University Press, 1994)

  31. Rudolf Haag, Local Quantum Physics (Springer, 1996)

  32. H.-J. Borchers, On revolutionizing quantum field theory with Tomita’s modular theory, J. Math. Phys. 41, 3604–3873 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14, 870–892 (1976)

    Article  ADS  Google Scholar 

  34. J.J. Bisognano, E.H. Wichmann, On the duality condition for quantum fields, J. Math. Phys. 17, 303–321 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  35. G.L. Sewell, PCT and gravitationally induced, Ann. Phys. 141, 201–224 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  36. Bert Schroer, Modular localization and the bootstrap-formfactor program, Nucl. Phys. B 499, 547–568 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. R. Brunetti, D. Guido, R. Longo, Modular localization and Wigner particles, Rev. Math. Phys. 14, 759–785 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Fassarella, Bert Schroer, Wigner particle theory and local quantum physics, J. Phys. A 35, 9123–9164 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Jens Mund, Bert Schroer, Jakob Yngvason, String-localized quantum fields and molecular localization, Commun. Math. Phys. 268, 621–672 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Jens Mund, Modular localization of massive particles with “any” spin in d = 2 + 1 dimensions, J. Math. Phys. 44, 2037–2057 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. R. Longo, Simple proof of existence of modular automorphisms in approximately finite dimensional von Neumann algebras, Pacific J. Math. 75, 199–205 (1978)

    MathSciNet  MATH  Google Scholar 

  42. R.F. Streater, A.S. Wightman, PCT, Spin and Statistics and all that (New York, Benjamin, 1964)

  43. Jens Mund, The Bisognano-Wichmann theorem for massive theories, Ann. Henri Poincare 2, 907–926 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Alain Connes, Caractérisation des espaces vectoriels ordonnées sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier 24, 121–155 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  45. Bert Schroer, Unexplored regions in QFT and the conceptual foundations of the Standard Model, arXiv:1006.3543

  46. Ozwaldo Zapata, On Facts in Superstring Theory, A Case Study: The AdS/CFT Correspondence, arXiv:0905.1439

  47. Ozwaldo Zapata, Spinning the superweb, essays on the history of string theory, http://www.spinningthesuperweb.blogspot.com/

  48. K. Pohlmeyer, A group-theoretical approach to the quantization of the free relativistic closed string, Phys. Lett. B 119, 100–104 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  49. Y. Nambu, Lectures at the Copenhagen Symposium, 1970, unpublished

  50. Tetsuo Goto, Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model, Progr. Theor. Phys. 46, 1560–1569 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. E. Martinec, The light-cone in string theory, Class. Quant. Grav. 10, 187–192 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  52. D.A. Lowe, Causal properties of free string field-theory, Phys. Lett. B 326, 223–230 (1994)

    Article  ADS  Google Scholar 

  53. Paolo Di Vecchia, The birth of string theory, Lect. Not. Phys. 737, 59–118 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  54. E. Witten, Global aspects of current algebra, Nucl. Phys. B 223, 422–432 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  55. Y. Kawahigashi, R. Longo, U. Pennig, K.-H. Rehren, The classification of non-local chiral CFT with c < 1, Commun. Math. Phys. 271, 375–385 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Gandalf Lechner, On the Construction of Quantum Field Theories with Factorizing S-Matrices, PhD thesis, arXiv:math-ph/0611050

  57. Gerhard Mack, D-dimensional Conformal Field Theories with anomalous dimensions as Dual Resonance Models, arXiv:0909.1024,

  58. Gerhard Mack, D-independent representations of conformal field theories in D dimensions via transformations to auxiliary dual resonance models, Scalar amplitude, arXiv:0907:2407

  59. N.N. Bogoliubov, A. Logunov, A.I. Oksak, I.T. Todorov, General principles of quantum field theory (Dordrecht Kluwer, 1990)

  60. Detlev Buchholz, Klaus Fredenhagen, Locality and the structure of particle states, Commun. Math. Phys. 84, 1–54 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Pascual Jordan, The Present State of Quantum Electrodynamics, in Talks and Discussions of the Theoretical-Physical Conference in Kharkov (May 19.–25., 1929)

  62. Pascual Jordan, The current position of quanta electro dynamics, Physik. Zeitschr. 30, 700–712 (1929)

    Google Scholar 

  63. Pascual Jordan, Zur Quantenelektrodynamik. III. Eichinvariante Quantelung und Diracsche Magnetpole, Zeitschrift für Physik 97, 535–537 (1935)

    Article  ADS  MATH  Google Scholar 

  64. Roman W. Jackiw, Dirac’s magnetic monopoles (again), Int. J. Mod. Phys. A 19S1, 137–143 (2004)

    Article  MathSciNet  Google Scholar 

  65. Rudolf Haag, Discussion of the ‘axioms’ and the asymptotic properties of a local field theory with composite particles (historical document), Eur. Phys. J. H 35, 243–253 (2010)

    Article  MathSciNet  Google Scholar 

  66. H. Epstein, V. Glaser, Role of locality in perturbation-theory, Ann. Inst. H. Poincaré A 19, 211–295 (1973)

    MathSciNet  Google Scholar 

  67. S. Doplicher, J.E. Roberts, Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics, Commun. Math. Phys. 131, 51–107 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. Bert Schroer, Modular Wedge Localization and the d = 1 + 1 Formfactor Program, Ann. Phys. 295, 190–223 (1999)

    MathSciNet  ADS  Google Scholar 

  69. Pascual Jordan, Beiträge zur Neutrinotheorie des Lichts III, Zeitschrift für Physik 105, 229–231 (1937)

    Article  ADS  MATH  Google Scholar 

  70. Pascual Jordan, Beiträge zur Neutrinotheorie des Lichts II, Zeitschrift für Physik 105, 114–121 (1937)

    Article  ADS  MATH  Google Scholar 

  71. Pascual Jordan, Beiträge zur Neutrinotheorie des Lichts I, Zeitschrift für Physik 102, 243–252 (1937)

    Article  ADS  Google Scholar 

  72. Pascual Jordan, Zur Neutrinotheorie des Lichtes, Zeitschrift für Physik 93, 464–472 (1935)

    Article  ADS  MATH  Google Scholar 

  73. B. Klaiber, The Thirring Model, edited by O.A. Barut, W.E. Brittin, Lectures in Theoretical Physics (Gordon and Breach, New York, 1968), volume 10 A, pp. 141–176

  74. V. Fock, Inconsistency of the neutrino theory of light, Nature 136, N3502 (1936) 1011–1012

    Article  ADS  Google Scholar 

  75. Julian Schwinger, Field theory commutators, Phys. Rev. Lett. 3, 296–297 (1959)

    Article  ADS  Google Scholar 

  76. Detlev Buchholz, Gerhard Mack, Ivan Todorov, The current algebra on the circle as a germ of local field theories, Nucl. Phys. B (Proc. Suppl.) 5, 20–56 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  77. A. Pais, Inward Bound (Clarendon Press, Oxford University Press, 1986)

  78. S. Doplicher, R. Longo, Standard and split inclusions of von Neumann algebras, Invent. Mat. 75, 493–536 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  79. S. Hollands, R.E. Wald, Quantum Field Theory Is Not Merely Quantum Mechanics Applied to Low Energy Effective Degrees of Freedom, General Relativity and Gravitation 36, 2595–2603 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  80. Pascual Jordan, Anschauliche Quantentheorie (Springer, Berlin, 1936)

  81. Pascual Jordan, Eugene Paul Wigner, Über das Paulische Äquivalenzverbot, Zeitschrift für Physik 47, 631–651 (1928)

    Article  ADS  Google Scholar 

  82. Julian Schwinger, Gauge invariance and mass, II. Phys. Rev. 128, 2425–2429 (1962)

    MathSciNet  ADS  MATH  Google Scholar 

  83. Julian Schwinger, Gauge theories of Vector particles. Theoretical Physics (Trieste Lectures, 1962) (I.A.E.A., Vienna 1963), p. 89

  84. L.V. Belvedere, J.A. Swieca, K.D. Rothe, Bert Schroer, Generalized Twodimensional Abelian Gauge Theories and Confinement, Nucl. Phys. B 153, 112–140 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  85. Bert Schroer, Two dimensional models as testing ground for principles and concepts of local quantum physics, Ann. Phys. 321, 435–479 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  86. Bert Schroer, Infrateilchen in des Quantenfeldtheorie, Fortschr. Phys. 11, 1–31 (1963), Bert Schroer, A note on infraparticles and unparticles, arXiv:0804.3563

  87. Pascual Jordan, Zur Quantenelektrodynamik, I. Eichinvariante Operatoren, Zeitschrift für Physik 95, 202–209 (1935)

    MATH  Google Scholar 

  88. O. Steinmann, A Jost-Schroer theorem for string fields, Commun. Math. Phys. 87, 259–264 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  89. J. Langerholc, Bert Schroer. Can current – operators determine a complete theory? Commun. Math. Phys. 4, 123–136 (1967)

    Article  MathSciNet  ADS  Google Scholar 

  90. S. Jacobs, Gauge bridges in classical field theory, DESY-THESIS-2009-009, http://unith.desy.de/research/aqft/diplomatheses/

  91. P. Leyland, J. Roberts, D. Testard, Duality for Quantum Free Fields, unpublished notes, CNRS Marseille, (1978)

  92. Detlev Buchholz, Gauss law and the infraparticle problem, Phys. Lett. B 174, 331–334 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  93. Felix Bloch, A. Nordsiek, Note on the radiation field of the electron, Phys. Rev. 52, 54–59 (1937)

    Article  ADS  MATH  Google Scholar 

  94. Rudolf Haag, Bert Schroer, Postulates of quantum field theory, J. Math. Phys. 3, 248–256 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  95. G.C. Hegerfeldt, Causality problems in Fermi’s two atom system, Phys. Rev. Lett. 72, 596–599 (1994)

    Article  ADS  MATH  Google Scholar 

  96. Detlev Buchholz, J. Yngvason, There are no causality problems for Fermi’s two atom system, Phys. Rev. Lett. 73, 613–616 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  97. Matthew Norton Wise, Pascual Jordan: quantum mechanics, psychology, National Socialism, in: Science, Technology and National Socialism, edited by Monika Renneberg, Mark Walker (Cambridge, 1994), pp. 224–254

  98. J. Cornwell, Hitler’s scientists, Science, War and the Devil’s Pact, Viking N4 (2000)

  99. Richard H. Beyler, Targeting the organism, The scientific and cultural context of Pascual Jordan’s quantum biology, 1932–1947, Isis 87, 248–273 (1996)

    Article  Google Scholar 

  100. Olivier Darrigol, The origin of quantized matter waves, Hist. Stud. Phys. Sci. 16/2, 197–253 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Schroer.

Additional information

Dedicated to my teacher and role model: Rudolf Haag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroer, B. Pascual Jordan’s legacy and the ongoing research in quantum field theory⋆. EPJ H 35, 377 (2011). https://doi.org/10.1140/epjh/e2011-10015-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjh/e2011-10015-8

Keywords

Navigation