Skip to main content
Log in

Statistical self-organization of an assembly of interacting walking drops in a confining potential

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A drop bouncing on a vertically vibrated surface may self-propel forward by standing waves and travels along a fluid interface. This system called walking drop forms a non-quantum wave-particle association at the macroscopic scale. The dynamics of one particle has triggered many investigations and has resulted in spectacular experimental results in the last decade. We investigate numerically the dynamics of an assembly of walkers, i.e., a large number of walking drops evolving on a unbounded fluid interface in the presence of a confining potential acting on the particles. We show that even if the individual trajectories are erratic, the system presents a well-defined ordered internal structure that remains invariant to parameter variations such as the number of drops, the memory time and the bath radius. We rationalize such non-stationary self-organization in terms of the symmetry of the waves and show that oscillatory pair potentials form a wavy collective state of active matter.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The C++ numerical code to adapt to various platforms with a Readme file is available at the link repository https://mycore.core-cloud.net/index.php/s/qlFPCxcMHDEjQr6.

References

  1. Y. Couder, S. Protière, E. Fort, A. Boudaoud, Nature 437, 208 (2005). https://doi.org/10.1038/437208a

    Article  ADS  Google Scholar 

  2. J.W.M. Bush, Annu. Rev. Fluid Mech. 47, 269 (2015). https://doi.org/10.1146/annurev-fluid-010814-014506

    Article  ADS  Google Scholar 

  3. J.W.M. Bush, A.U. Oza, Rep. Progr. Phys. 84, 017001 (2021)

    Article  Google Scholar 

  4. J. Walker, Sci. Am. 238, 151 (1978)

    Article  Google Scholar 

  5. S. Protiere, A. Boudaoud, Y. Couder, J. Fluid Mech. 554, 85 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. Y. Couder, E. Fort, C. Gautier, A. Boudaoud, Phys. Rev. Lett. 94, 177801 (2005)

    Article  ADS  Google Scholar 

  7. N. Vandewalle, D. Terwagne, K. Mulleners, T. Gilet, S. Dorbolo, Phys. Rev. Lett. 100 (2008)

  8. A. Eddi, E. Sultan, J. Moukhtar, E. Fort, M. Rossi, Y. Couder, J. Fluid Mech. 674, 433 (2011). https://doi.org/10.1017/S0022112011000176

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Moláček, J.W.M. Bush, J. Fluid Mech. 727, 612 (2013). https://doi.org/10.1017/jfm.2013.280

    Article  ADS  Google Scholar 

  10. J. Moláček, J.W.M. Bush, J. Fluid Mech. 727, 582 (2013). https://doi.org/10.1017/jfm.2013.279

    Article  ADS  Google Scholar 

  11. A.U. Oza, R.R. Rosales, J.W.M. Bush, J. Fluid Mech. 737, 552 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. P.A. Milewski, C.A. Galeano-Rios, A. Nachbin, J.W.M. Bush, J. Fluid Mech. 778, 361 (2015). https://doi.org/10.1017/jfm.2015.386

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Durey, P.A. Milewski, J. Fluid Mech. 821, 296 (2017). https://doi.org/10.1017/jfm.2017.235

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Faraday, Philosophical transactions of the royal society of London 121, 299 (1831) http://www.jstor.org/stable/107936

  15. J. Miles, D. Henderson, Annu. Rev. Fluid Mech. 22, 143 (1990)

    Article  ADS  Google Scholar 

  16. T.B. Benjamin, F. Ursell, Proc. Royal Soc. Lond. A 225, 505 (1954)

    Article  ADS  Google Scholar 

  17. Y. Couder, E. Fort, Phys. Rev. Lett. 97, 1 (2006)

    Article  Google Scholar 

  18. G. Pucci, D.M. Harris, L.M. Faria, J.W.M. Bush, J. Fluid Mech. 835, 1136–1156 (2018). https://doi.org/10.1017/jfm.2017.790

    Article  ADS  Google Scholar 

  19. C. Ellegaard, M.T. Levinsen, Phys. Rev. E 102, 023115 (2020). https://doi.org/10.1103/PhysRevE.102.023115

    Article  ADS  Google Scholar 

  20. D.M. Harris, J. Moukhtar, E. Fort, Y. Couder, J.W.M. Bush, Phys. Rev. E 88, 011001 (2013). https://doi.org/10.1103/PhysRevE.88.011001

    Article  ADS  Google Scholar 

  21. T. Gilet, Phys. Rev. E 90, 052917 (2014). https://doi.org/10.1103/PhysRevE.90.052917

    Article  ADS  Google Scholar 

  22. T. Gilet, Phys. Rev. E (2016). https://doi.org/10.1103/PhysRevE.93.042202

    Article  Google Scholar 

  23. P.J. Sáenz, T. Cristea-Platon, J.W.M. Bush, Nat. Phys. 14, 315 (2018). https://doi.org/10.1038/s41567-017-0003-x

    Article  Google Scholar 

  24. M. Durey, P.A. Milewski, Z. Wang, J. Fluid Mech. 891, A3 (2020). https://doi.org/10.1017/jfm.2020.140

    Article  ADS  Google Scholar 

  25. E. Fort, A. Eddi, A. Boudaoud, J. Moukhtar, Y. Couder, Proc. Natl. Acad. Sci. 107, 17515 (2010). https://doi.org/10.1073/pnas.1007386107

    Article  ADS  Google Scholar 

  26. M. Labousse, A. U. Oza, S. Perrard, and J. W. M. Bush, Phys. Rev. E 93 (2016)

  27. A.U. Oza, D.M. Harris, R.R. Rosales, J.W.M. Bush, J. Fluid Mech. 744, 404 (2014). https://doi.org/10.1017/jfm.2014.50

    Article  ADS  Google Scholar 

  28. S. Perrard, M. Labousse, M. Miskin, E. Fort, Y. Couder, Nat. Commun. 5, 3219 (2014). https://doi.org/10.1038/ncomms4219

    Article  ADS  Google Scholar 

  29. S. Perrard, M. Labousse, E. Fort, Y. Couder, Phys. Rev. Lett. 113, 104101 (2014). https://doi.org/10.1103/PhysRevLett.113.104101

    Article  ADS  Google Scholar 

  30. M. Labousse, S. Perrard, Y. Couder, E. Fort, New J. Phys. 16, 113027 (2014). https://doi.org/10.1088/1367-2630/16/11/113027

    Article  Google Scholar 

  31. P.J. Sáenz, T. Cristea-Platon, J.W.M. Bush, Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aay9234

    Article  Google Scholar 

  32. M. Hubert, S. Perrard, M. Labousse, N. Vandewalle, Y. Couder, Phys. Rev. E 100, 032201 (2019). https://doi.org/10.1103/PhysRevE.100.032201

    Article  ADS  Google Scholar 

  33. V. Bacot, S. Perrard, M. Labousse, Y. Couder, E. Fort, Phys. Rev. Lett. 122, 104303 (2019). https://doi.org/10.1103/PhysRevLett.122.104303

    Article  ADS  Google Scholar 

  34. M. Durey, P.A. Milewski, J.W.M. Bush, Chaos: Interdiscip. J. Nonlinear Sci. 28, 096108 (2018). https://doi.org/10.1063/1.5030639

    Article  Google Scholar 

  35. M. Durey, Chaos: Interdiscip. J. Nonlinear Sci. 30, 103115 (2020). https://doi.org/10.1063/5.0020775

    Article  MathSciNet  Google Scholar 

  36. M. Durey, J.W.M. Bush, Chaos: Interdiscip. J. Nonlinear Sci. 31, 033136 (2021)

    Article  Google Scholar 

  37. M. Durey, S. Turton, J.W.M. Bush, Proc. Royal Soc. A 476, 2239 (2020)

    Google Scholar 

  38. O. Devauchelle, E. Lajeunesse, F. James, C. Josserand, P. Lagrée, Comptes Rendus. Mécanique 438, 591 (2020). https://doi.org/10.5802/crmeca.25

    Article  Google Scholar 

  39. R.N. Valani, A.C. Slim, D.M. Paganin, T.P. Simula, T. Vo, Phys. Rev. E 104, 015106 (2021). https://doi.org/10.1103/PhysRevE.104.015106

    Article  ADS  Google Scholar 

  40. M. Hubert, S. Perrard, N. Vandewalle, M. Labousse, Nat. Commun. 13, 4357 (2022)

    Article  ADS  Google Scholar 

  41. S. Turton, M. Couchman, J. Bush, Chaos 28, 096111 (2018)

    Article  ADS  Google Scholar 

  42. C. Borghesi, J. Moukhtar, M. Labousse, A. Eddi, E. Fort, Y. Couder, Phys. Rev. E - Stat., Nonlinear, Soft Matter 90, 063017 (2014). https://doi.org/10.1103/PhysRevE.90.063017

    Article  Google Scholar 

  43. R.N. Valani, A.C. Slim, Chaos 28, 096114 (2018). https://doi.org/10.1063/1.5032128

    Article  ADS  MathSciNet  Google Scholar 

  44. J. Arbelaiz, A.U. Oza, J.W.M. Bush, Phys. Rev. Fluids 3, 013604 (2018). https://doi.org/10.1103/PhysRevFluids.3.013604

    Article  ADS  Google Scholar 

  45. M.M.P. Couchman, S.E. Turton, J.W.M. Bush, J. Fluid Mech. 871, 212 (2019). https://doi.org/10.1017/jfm.2019.293

    Article  ADS  Google Scholar 

  46. A. Eddi, J. Moukhtar, S. Perrard, E. Fort, Y. Couder, Phys. Rev. Lett. 108 (2012)

  47. A.U. Oza, E. Siéfert, D.M. Harris, J. Moláček, J.W.M. Bush, Phys. Rev. Fluids 2, 053601 (2006)

    Article  ADS  Google Scholar 

  48. K. Papatryfonos, M. Ruelle, C. Bourdiol, A. Nachbin, B. J. W. M., and M. Labousse, Commun. Phys.5, 142 (2022)

  49. V. Frumkin, J.M. Bush, K. Papatryfonos, Phys Rev, Lett. 130, 064002 (2023)

  50. K. Papatryfonos, L. Vervoort, A. Nachbin, M. Labousse, and J. W. M. Bush, ArXiv preprint (2022)

  51. A. Eddi, A. Decelle, E. Fort, and Y. Couder, Europhys. Lett. 87 (2009)

  52. A. Eddi, A. Boudaoud, and Y. Couder, Euro. Phys. Lett. 94 (2011)

  53. M.M.P. Couchman, D.J. Evans, J.W.M. Bush, Symmetry 14, 1524 (2022). https://doi.org/10.3390/sym14081524

    Article  ADS  Google Scholar 

  54. B. Filoux, M. Hubert, N. Vandewalle, Phys. Rev. E 92, 041004 (2015). https://doi.org/10.1103/PhysRevE.92.041004

    Article  ADS  Google Scholar 

  55. B. Filoux, M. Hubert, P. Schlagheck, N. Vandewalle, Phys. Rev. Fluids 2, 013601 (2017). https://doi.org/10.1103/PhysRevFluids.2.013601

    Article  ADS  Google Scholar 

  56. N. Vandewalle, B. Filoux, and M. Hubert, arXiv preprint (2019)

  57. M.M.P. Couchman, J.W.M. Bush, J. Fluid Mech. 903, A49 (2020)

    Article  ADS  Google Scholar 

  58. S.J. Thomson, M.M.P. Couchman, J.W.M. Bush, Phys. Rev. Fluids 5, 083601 (2020)

    Article  ADS  Google Scholar 

  59. S.J. Thomson, M. Durey, R.R. Rosales, Proc. R. Soc. Lond. Ser. A 476, 20200155 (2020). https://doi.org/10.1098/rspa.2020.0155

    Article  ADS  Google Scholar 

  60. S.J. Thomson, M. Durey, R.R. Rosales, Phys. Rev. E 103, 062215 (2021). https://doi.org/10.1103/PhysRevE.103.062215

    Article  ADS  Google Scholar 

  61. L. Barnes, G. Pucci, A.U. Oza, Comptes Rendus Mécanique 348, 573 (2020). https://doi.org/10.5802/crmeca.30

    Article  Google Scholar 

  62. P.J. Sáenz, G. Pucci, S.E. Turton, A. Goujon, R.R. Rosales, J. Dunkel, J.W.M. Bush, Nature 596, 58 (2021)

    Article  ADS  Google Scholar 

  63. C.A. Galeano-Rios, P.A. Milewski, J.-M. Vanden-Broeck, J. Fluid Mech. 873, 856 (2019). https://doi.org/10.1017/jfm.2019.409

    Article  ADS  MathSciNet  Google Scholar 

  64. L. Rayleigh, Phil. Mag. 16 (1883)

  65. S. Douady, J. Fluid Mech. 221, 383 (1990)

    Article  ADS  Google Scholar 

  66. K. Kumar, L.S. Tuckerman, J. Fluid Mech. 279, 49 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  67. K. Kumar, Proc. Royal Soc. A 452, 1113 (1996)

    Article  ADS  Google Scholar 

  68. S. Protière, A. Boudaoud, Y. Couder, J. Fluid Mech. 554, 85 (2006). https://doi.org/10.1017/S0022112006009190

    Article  ADS  MathSciNet  Google Scholar 

  69. L. Tadrist, J.-B. Shim, T. Gilet, P. Schlagheck, J. Fluid Mech. 848, 906 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  70. M. Labousse, Etude d’une dynamique à mémoire de chemin: une expérimentation théorique, Ph.D. thesis, Université Pierre et Marie Curie-Paris VI (2014)

  71. L. Tambasco and J. Bush, Chaos (Focus Issue: Hydrodynamic Quantum Analogs) 28, 096115 (2018)

  72. F. Olver, D. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, Cambridge, 2010), p.247

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by ML. Methodology was contributed by AH and ML. Investigation was contributed by AH and ML. Visualization was contributed by AH. Project administration was contributed by ML. Supervision was contributed by ML. Writing—original draft, was contributed by ML. Writing—review and editing, was contributed by AH, ML.

Corresponding author

Correspondence to Matthieu Labousse.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hélias, A., Labousse, M. Statistical self-organization of an assembly of interacting walking drops in a confining potential. Eur. Phys. J. E 46, 29 (2023). https://doi.org/10.1140/epje/s10189-023-00288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00288-5

Navigation