Skip to main content
Log in

On the bridge hypothesis in the glass transition of freestanding polymer films

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

A Correction to this article was published on 20 October 2023

This article has been updated

Abstract

Freestanding thin polymer films with high molecular weights exhibit an anomalous decrease in the glass-transition temperature with film thickness. Specifically, in such materials, the measured glass-transition temperature evolves in an affine way with the film thickness, with a slope that weakly depends on the molecular weight. De Gennes proposed a sliding mechanism as the hypothetical dominant relaxation process in these systems, where stress kinks could propagate in a reptation-like fashion through so-called bridges, i.e. from one free interface to the other along the backbones of polymer macromolecules. Here, by considering the exact statistics of finite-sized random walks within a confined box, we investigate in details the bridge hypothesis. We show that the sliding mechanism cannot reproduce the basic features appearing in the experiments, and we exhibit the fundamental reasons behind such a fact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data produced for this article are available upon reasonable request to the authors.

Change history

References

  1. H. Vogel, The law of the relationship between viscosity of liquids and the temperature. Phys. Z. 22, 645 (1921)

    Google Scholar 

  2. G.S. Fulcher, Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8(6), 339 (1925)

    Google Scholar 

  3. G. Tammann, W. Hesse, Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 156, 245 (1926)

    Google Scholar 

  4. M.L. Williams, R.F. Landel, J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701 (1955)

    Google Scholar 

  5. C.A. Angell, Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995)

    ADS  Google Scholar 

  6. L. Berthier, G. Biroli, Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587 (2011)

    ADS  Google Scholar 

  7. M.D. Ediger, P. Harrowell, Perspective: supercooled liquids and glasses. J. Chem. Phys. 137 (2012)

  8. G. Parisi, P. Urbani, F. Zamponi, Theory of Simple Glasses: Exact Solutions in Infinite Dimensions (Cambridge University Press, Cambridge, 2020)

    MATH  Google Scholar 

  9. P. Anderson, Through the glass lightly. Science 267, 1615 (1995)

    Google Scholar 

  10. G. Adam, J.H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965)

    ADS  Google Scholar 

  11. E. Donth, Characteristic length of the glass-transition. J. Polym. Sci. B Polym. Phys. 34, 2881 (1996)

    ADS  Google Scholar 

  12. J.D. Stevenson, J. Schmalian, P.G. Wolynes, The shapes of cooperatively rearranging regions in glass-forming liquids. Nat. Phys. 2, 268 (2006)

    Google Scholar 

  13. A.J. Liu, S.R. Nagel, The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1 (2010)

  14. Z. Zhang, P.J. Yunker, P. Habdas, A.G. Yodh, Cooperative rearrangement regions and dynamical heterogeneities in colloidal glasses with attractive versus repulsive interactions. Phys. Rev. Lett. 107, 208303 (2011)

    ADS  Google Scholar 

  15. J. Bares, Glass transition of the polymer microphase. Macromolecules 8, 244 (1975)

    ADS  Google Scholar 

  16. C.L. Jackson, G.B. McKenna, The melting behavior of organic materials confined in porous solids. J. Chem. Phys. 93(12), 9002 (1990)

    ADS  Google Scholar 

  17. P. Scheidler, W. Kob, K. Binder, The relaxation dynamics of a simple glass former confined in a pore. Europhys. Lett. 52, 277 (2000)

    ADS  Google Scholar 

  18. L. Berthier, Finite-size scaling analysis of the glass transition. Phys. Rev. Lett. 91, 055701 (2003)

    ADS  Google Scholar 

  19. J.L. Keddie, R.A.L. Jones, R.A. Cory, Size-dependent depression of the glass transition temperature in polymer films. Europhys. Lett. 27(1), 59 (1994)

    ADS  Google Scholar 

  20. J.A. Forrest, K. Dalnoki-Veress, The glass transition in thin polymer films. Adv. Colloid Interface Sci. 94, 167 (2001)

    Google Scholar 

  21. F. Varnik, J. Baschnagel, K. Binder, Reduction of the glass transition temperature in polymer films: a molecular-dynamics study. Phys. Rev. E 65, 021507 (2002)

    ADS  Google Scholar 

  22. C.J. Ellison, J.M. Torkelson, The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat. Mater. 2, 695 (2003)

    ADS  Google Scholar 

  23. J. Baschnagel, F. Varnik, Computer simulations of super-cooled polymer melts in the bulk and in confined geometry. J. Phys.: Condens. Matter 17, R851 (2005)

    ADS  Google Scholar 

  24. M. Alcoutlabi, G.B. McKenna, Effects of confinement on material behaviour at the nanometre size scale. J. Phys.: Condens. Matter 17, R461 (2005)

    ADS  Google Scholar 

  25. Z. Fakhraai, J.A. Forrest, Measuring the surface dynamics of glassy polymers. Science 319, 600 (2008)

    Google Scholar 

  26. Z. Yang, Y. Fujii, F.K. Lee, C.-H. Lam, O.K.C. Tsui, Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science 328, 1676 (2010)

    ADS  Google Scholar 

  27. Y. Chai, T. Salez, J.D. McGraw, M. Benzaquen, K. Dalnoki-Veress, E. Raphaël, J.A. Forrest, A direct quantitative measure of surface mobility in a glassy polymer. Science 343, 994 (2014)

    ADS  Google Scholar 

  28. H. Yoon, G.B. McKenna, Substrate effects on glass transition and free surface viscoelasticity of ultrathin polystyrene films. Macromolecules 47, 8808 (2014)

    ADS  Google Scholar 

  29. M.D. Ediger, J.A. Forrest, Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules 47, 471 (2014)

    ADS  Google Scholar 

  30. K. Ngai, A. Rizos, D. Plazek, Reduction of the glass temperature of thin freely standing polymer films caused by the decrease of the coupling parameter in the coupling model. J. Non-Cryst. Solids 235, 435 (1998)

    ADS  Google Scholar 

  31. D. Long, F. Lequeux, Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur. Phys. J. E 4, 371 (2001)

    Google Scholar 

  32. S. Herminghaus, K. Jacobs, R. Seemann, The glass transition of thin polymer films: some questions, and a possible answer. Eur. Phys. J. E 5, 531 (2001)

    Google Scholar 

  33. J.E.G. Lipson, S.T. Milner, Percolation model of interfacial effects in polymeric glasses. Eur. Phys. J. B 72, 133 (2009)

    ADS  Google Scholar 

  34. J.A. Forrest, What can we learn about a dynamical length scale in glasses from measurements of surface mobility? J. Chem. Phys. 139, 084702 (2013)

    ADS  Google Scholar 

  35. C.-H. Lam, O.K. Tsui, Crossover to surface flow in supercooled unentangled polymer films. Phys. Rev. E 88, 042604 (2013)

    ADS  Google Scholar 

  36. J.A. Forrest, K. Dalnoki-Veress, When does a glass transition temperature not signify a glass transition? ACS Macro Lett. 3, 310 (2014)

    Google Scholar 

  37. S. Mirigian, K.S. Schweizer, Communication: slow relaxation, spatial mobility gradients, and vitrification in confined films. J. Chem. Phys. 141, 161103 (2014)

    ADS  Google Scholar 

  38. T. Salez, J. Salez, K. Dalnoki-Veress, E. Raphaël, J.A. Forrest, Cooperative strings and glassy interfaces. Proc. Natl. Acad. Sci. 112, 8227 (2015)

    ADS  Google Scholar 

  39. Z. Hanakata, B.A. Pazminõ Betancourt, J.F. Douglas, F.W. Starr, A unifying framework to quantify the effects of substrate interactions, stiffness, and roughness on the dynamics of thin supported polymer films. J. Chem. Phys. 142, 234907 (2015)

    ADS  Google Scholar 

  40. M. Arutkin, E. Raphaël, J.A. Forrest, T. Salez, Cooperative strings and glassy dynamics in various confined geometries. Phys. Rev. E 101, 032122 (2020)

    ADS  MathSciNet  Google Scholar 

  41. G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphaël, Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting. Nat. Mater. 4, 754 (2005)

    ADS  Google Scholar 

  42. K. Dalnoki-Veress, J.A. Forrest, P.-G. de Gennes, J.R. Dutcher, Glass transition reductions in thin freely-standing polymer films: a scaling analysis of chain confinement effects. J. Phys. IV 10, 221 (2000)

    Google Scholar 

  43. J.A. Forrest, K. Dalnoki-Veress, The glass transition in thin polymer films. Adv. Coll. Interface Sci. 94, 167 (2001)

    Google Scholar 

  44. C.B. Roth, J.R. Dutcher, Glass transition temperature of freely-standing films of atactic poly (methyl methacrylate). Eur. Phys. J. E 12, 103 (2003)

    Google Scholar 

  45. C.B. Roth, A. Pound, S.W. Kamp, C.A. Murray, J.R. Dutcher, Molecular-weight dependence of the glass transition temperature of freely-standing poly(methyl methacrylate) films. Eur. Phys. J. E 20, 441 (2006)

    Google Scholar 

  46. S. Kim, J.M. Torkelson, Distribution of glass transition temperatures in free-standing, nanoconfined polystyrene films: a test of de Gennes’ sliding motion mechanism. Macromolecules 44, 4546 (2011)

    ADS  Google Scholar 

  47. M. Aubouy, M. Manghi, E. Raphaël, Interfacial properties of polymeric liquids. Phys. Rev. Lett. 84, 4858 (2000)

    ADS  Google Scholar 

  48. J.E. Pye, C.B. Roth, Two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films as measured by transmission ellipsometry. Phys. Rev. Lett. 107, 235701 (2011)

    ADS  Google Scholar 

  49. O. Tsui, Anomalous dynamics of polymer films, in Polymer Thin Films, World Scientific, p. 267 (2008)

  50. O. Bäumchen, J.D. McGraw, J.A. Forrest, K. Dalnoki-Veress, Reduced glass transition temperatures in thin polymer films: surface effect or artifact? Phys. Rev. Lett. 109, 055701 (2012)

    ADS  Google Scholar 

  51. D.L. Baker, M. Reynolds, R. Masurel, P.D. Olmsted, J. Mattsson, Cooperative intramolecular dynamics control the chain-length-dependent glass transition in polymers. Phys. Rev. X 12, 021047 (2022)

    Google Scholar 

  52. P.-G. de Gennes, Glass transitions in thin polymer films. Eur. Phys. J. E 2, 201 (2000)

    Google Scholar 

  53. P.-G. de Gennes, Glass transitions of freely suspended polymer films. Comptes Rendus de l’Académie des Scienes 1(IV), 1179 (2000)

    Google Scholar 

  54. S.T. Milner, J.E. Lipson, Delayed glassification model for free-surface suppression of Tg in polymer glasses. Macromolecules 43, 9865 (2010)

    ADS  Google Scholar 

  55. J.E. Lipson, S.T. Milner, Local and average glass transitions in polymer thin films. Macromolecules 43, 9874 (2010)

    ADS  Google Scholar 

  56. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1988), p.73

    Google Scholar 

  57. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the European Union through the European Research Council under EMetBrown (ERCCoG-101039103) grant. The authors also acknowledge financial support from the Agence Nationale de la Recherche under EMetBrown (ANR-21-ERCC-0010-01), Softer (ANR-21-CE06-0029) and Fricolas (ANR-21-CE06-0039) grants, as well as from the UHJ-France association and the Scopus Foundation. Finally, they thank the Soft Matter Collaborative Research Unit, Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science at Hokkaido University, Sapporo, Japan, as well as the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

JF, ER and TS conceived the study. HB and MA performed the analytical research. RC performed the numerical simulations. HB wrote the first draft of the manuscript. All the authors discussed the results and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Thomas Salez.

Additional information

For Fyl, who has always encouraged the young and not-so-young people around him to be inventive and to have fun in their pursuit of science.

The original online version of this article was revised: “A dedication to the collection: Festschrift in honor of Philip (Fyl) Pincus has been added”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonneau, H., Arutkin, M., Chen, R. et al. On the bridge hypothesis in the glass transition of freestanding polymer films. Eur. Phys. J. E 46, 8 (2023). https://doi.org/10.1140/epje/s10189-023-00272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00272-z

Navigation