Skip to main content
Log in

Alignment rule and geometric confinement lead to stability of a vortex in active flow

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Vortices are hallmarks of a wide range of nonequilibrium phenomena in fluids at multiple length scales. In this work, we numerically study the whirling motion of self-propelled soft point particles confined in circular domain, and aim at addressing the stability issue of the coherent vortex structure. By the combination of dynamical and statistical analysis at the individual particle level, we reveal the persistence of the whirling motion resulting from the subtle competition of activity and geometric confinement. In the stable whirling motion, the scenario of the coexistence of the irregular microscopic motions of individual particles and the regular global whirling motion is fundamentally different from the motion of a vortex in passive fluid. Possible orientational order coexisting with the whirling are further explored. This work shows the stability mechanism of vortical dynamics in active media under the alignment rule in confined space and may have implications in creating and harnessing macroscale coherent dynamical states by tuning the confining geometry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. J.C. Mcwilliams, The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 21–43 (1984). https://doi.org/10.1017/S0022112084001750

    Article  ADS  MATH  Google Scholar 

  2. A.N. Kolmogorov, V. Levin, J.C.R. Hunt, O.M. Phillips, D. Williams, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. Lond. A 434(1890), 9–13 (1991). https://doi.org/10.1098/rspa.1991.0075

    Article  ADS  MathSciNet  Google Scholar 

  3. G.F. Carnevale, J.C. McWilliams, Y. Pomeau, J.B. Weiss, W.R. Young, Evolution of vortex statistics in two-dimensional turbulence. Phys. Rev. Lett. 66, 2735–2737 (1991). https://doi.org/10.1103/PhysRevLett.66.2735

    Article  ADS  Google Scholar 

  4. D.I. Pullin, P.G. Saffman, Vortex dynamics in turbulence. Annu. Rev. Fluid Mech. 30(1), 31–51 (1998). https://doi.org/10.1146/annurev.fluid.30.1.31

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Observation of vortex lattices in Bose–Einstein condensates. Science 292(5516), 476–479 (2001). https://doi.org/10.1126/science.1060182

    Article  ADS  Google Scholar 

  6. V. Moshchalkov, M. Menghini, T. Nishio, Q.H. Chen, A.V. Silhanek, V.H. Dao, L.F. Chibotaru, N.D. Zhigadlo, J. Karpinski, Type-1.5 superconductivity. Phys. Rev. Lett. 102, 117001 (2009). https://doi.org/10.1103/PhysRevLett.102.117001

    Article  ADS  Google Scholar 

  7. W.-K. Kwok, U. Welp, A. Glatz, A.E. Koshelev, K.J. Kihlstrom, G.W. Crabtree, Vortices in high-performance high-temperature superconductors. Rep. Prog. Phys. 79(11), 116501 (2016). https://doi.org/10.1088/0034-4885/79/11/116501

    Article  ADS  Google Scholar 

  8. A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, M. Viale, Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. 107(26), 11865–11870 (2010). https://doi.org/10.1073/pnas.1005766107

    Article  ADS  Google Scholar 

  9. Y. Katz, K. Tunstrøm, C.C. Ioannou, C. Huepe, I.D. Couzin, Inferring the structure and dynamics of interactions in schooling fish. Proc. Natl. Acad. Sci. 108(46), 18720–18725 (2011). https://doi.org/10.1073/pnas.1107583108

    Article  ADS  Google Scholar 

  10. E. Lushi, H. Wioland, R.E. Goldstein, Fluid flows created by swimming bacteria drive self-organization in confined suspensions. Proc. Natl. Acad. Sci. 111(27), 9733–9738 (2014). https://doi.org/10.1073/pnas.1405698111

    Article  ADS  Google Scholar 

  11. A.C.H. Tsang, E. Kanso, Circularly confined microswimmers exhibit multiple global patterns. Phys. Rev. E 91, 043008 (2015). https://doi.org/10.1103/PhysRevE.91.043008

    Article  ADS  Google Scholar 

  12. A. Sokolov, I.S. Aranson, Rapid expulsion of microswimmers by a vortical flow. Nat. Commun. 7(1), 11114 (2016). https://doi.org/10.1038/ncomms11114

    Article  ADS  Google Scholar 

  13. A. Kaiser, A. Snezhko, I.S. Aranson, Flocking ferromagnetic colloids. Sci. Adv. 3(2), 1601469 (2017). https://doi.org/10.1126/sciadv.1601469

    Article  ADS  Google Scholar 

  14. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-4284-0

  15. D. Crowdy, A class of exact multipolar vortices. Phys. Fluids 11(9), 2556–2564 (1999). https://doi.org/10.1063/1.870118

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. H. Aref, Point vortex dynamics: a classical mathematics playground. J. Math. Phys. 48(6), 065401 (2007). https://doi.org/10.1063/1.2425103

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Sokolovskiy, M.A., Verron, J.: Dynamics of Vortex Structures in a Stratified Rotating Fluid. Springer, Switzerland (2014). https://doi.org/10.1007/978-3-319-00789-2

  18. Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics. Springer, Switzerland (2021). https://doi.org/10.1007/978-3-030-74278-2

  19. H. Helmholtz, Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen. J. Reine Angew. Math. 1858(55), 25–55 (1858). https://doi.org/10.1515/crll.1858.55.25

    Article  MathSciNet  MATH  Google Scholar 

  20. R.R. Long, A vortex in an infinite viscous fluid. J. Fluid Mech. 11(4), 611–624 (1961). https://doi.org/10.1017/S0022112061000767

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A.N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high reynolds number. J. Fluid Mech. 13(1), 82–85 (1962). https://doi.org/10.1017/S0022112062000518

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. R. Aditi Simha, S. Ramaswamy, Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89, 058101 (2002). https://doi.org/10.1103/PhysRevLett.89.058101

    Article  ADS  MATH  Google Scholar 

  23. C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Goldstein, J.O. Kessler, Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103 (2004). https://doi.org/10.1103/PhysRevLett.93.098103

    Article  ADS  Google Scholar 

  24. I. Tuval, L. Cisneros, C. Dombrowski, C.W. Wolgemuth, J.O. Kessler, R.E. Goldstein, Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. 102(7), 2277–2282 (2005). https://doi.org/10.1073/pnas.0406724102

    Article  ADS  MATH  Google Scholar 

  25. L.H. Cisneros, R. Cortez, C. Dombrowski, R.E. Goldstein, J.O. Kessler, Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp. Fluids 43, 737 (2007). https://doi.org/10.1007/s00348-007-0387-y

    Article  Google Scholar 

  26. A. Sokolov, I.S. Aranson, J.O. Kessler, R.E. Goldstein, Concentration dependence of the collective dynamics of swimming bacteria. Phys. Rev. Lett. 98, 158102 (2007). https://doi.org/10.1103/PhysRevLett.98.158102

    Article  ADS  Google Scholar 

  27. H.P. Zhang, A. Be’er, E.-L. Florin, H.L. Swinney, Collective motion and density fluctuations in bacterial colonies. Proc. Natl. Acad. Sci. 107(31), 13626–13630 (2010). https://doi.org/10.1073/pnas.1001651107

    Article  ADS  Google Scholar 

  28. H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R.E. Goldstein, H. Löwen, J.M. Yeomans, Meso-scale turbulence in living fluids. Proc. Natl. Acad. Sci. 109(36), 14308–14313 (2012). https://doi.org/10.1073/pnas.1202032109

    Article  ADS  MATH  Google Scholar 

  29. A. Sokolov, I.S. Aranson, Physical properties of collective motion in suspensions of bacteria. Phys. Rev. Lett. 109, 248109 (2012). https://doi.org/10.1103/PhysRevLett.109.248109

    Article  ADS  Google Scholar 

  30. J. Dunkel, S. Heidenreich, K. Drescher, H.H. Wensink, M. Bär, R.E. Goldstein, Fluid dynamics of bacterial turbulence. Phys. Rev. Lett. 110, 228102 (2013). https://doi.org/10.1103/PhysRevLett.110.228102

    Article  ADS  Google Scholar 

  31. A. Doostmohammadi, J.M. Yeomans, Coherent motion of dense active matter. Eur. Phys. J. Spec. Top. 227(17), 2401–2411 (2019). https://doi.org/10.1140/epjst/e2019-700109-x

    Article  Google Scholar 

  32. R. Voituriez, J.F. Joanny, J. Prost, Spontaneous flow transition in active polar gels. Europhys. Lett. 70(3), 404–410 (2005). https://doi.org/10.1209/epl/i2004-10501-2

    Article  ADS  Google Scholar 

  33. B. Szabó, G.J. Szöllösi, B. Gönci, Z. Jurányi, D. Selmeczi, T. Vicsek, Phase transition in the collective migration of tissue cells: experiment and model. Phys. Rev. E 74, 061908 (2006). https://doi.org/10.1103/PhysRevE.74.061908

    Article  ADS  Google Scholar 

  34. A. Bricard, J.-B. Caussin, D. Das, C. Savoie, V. Chikkadi, K. Shitara, O. Chepizhko, F. Peruani, D. Saintillan, D. Bartolo, Emergent vortices in populations of colloidal rollers. Nat. Commun. 6(1), 7470 (2015). https://doi.org/10.1038/ncomms8470

    Article  ADS  Google Scholar 

  35. J.U. Klamser, S.C. Kapfer, W. Krauth, Thermodynamic phases in two-dimensional active matter. Nat. Commun. 9(1), 5045 (2018). https://doi.org/10.1038/s41467-018-07491-5

    Article  ADS  Google Scholar 

  36. P. Digregorio, D. Levis, A. Suma, L.F. Cugliandolo, G. Gonnella, I. Pagonabarraga, Full phase diagram of active Brownian disks: from melting to motility-induced phase separation. Phys. Rev. Lett. 121, 098003 (2018). https://doi.org/10.1103/PhysRevLett.121.098003

    Article  ADS  Google Scholar 

  37. G. Briand, M. Schindler, O. Dauchot, Spontaneously flowing crystal of self-propelled particles. Phys. Rev. Lett. 120, 208001 (2018). https://doi.org/10.1103/PhysRevLett.120.208001

    Article  ADS  Google Scholar 

  38. Armengol-Collado, J.-M., Carenza, L.N., Giomi, L.: Hydrodynamics and multiscale order in confluent epithelia. arXiv preprint arXiv:2202.00651 (2022)

  39. H. Wioland, F.G. Woodhouse, J. Dunkel, J.O. Kessler, R.E. Goldstein, Confinement stabilizes a bacterial suspension into a spiral vortex. Phys. Rev. Lett. 110, 268102 (2013). https://doi.org/10.1103/PhysRevLett.110.268102

    Article  ADS  Google Scholar 

  40. M. Neef, K. Kruse, Generation of stationary and moving vortices in active polar fluids in the planar Taylor–Couette geometry. Phys. Rev. E 90, 052703 (2014). https://doi.org/10.1103/PhysRevE.90.052703

    Article  ADS  Google Scholar 

  41. A. Doostmohammadi, T.N. Shendruk, K. Thijssen, J.M. Yeomans, Onset of meso-scale turbulence in active nematics. Nat. Commun. 8(1), 15326 (2017). https://doi.org/10.1038/ncomms15326

    Article  ADS  Google Scholar 

  42. M. James, D.A. Suchla, J. Dunkel, M. Wilczek, Emergence and melting of active vortex crystals. Nat. Commun. 12(1), 5630 (2021). https://doi.org/10.1038/s41467-021-25545-z

    Article  ADS  Google Scholar 

  43. I.H. Riedel, K. Kruse, J. Howard, A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309(5732), 300–303 (2005). https://doi.org/10.1126/science.1110329

    Article  ADS  Google Scholar 

  44. Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chaté, K. Oiwa, Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483(7390), 448–452 (2012). https://doi.org/10.1038/nature10874

    Article  ADS  Google Scholar 

  45. A. Doostmohammadi, M.F. Adamer, S.P. Thampi, J.M. Yeomans, Stabilization of active matter by flow-vortex lattices and defect ordering. Nat. Commun. 7(1), 10557 (2016). https://doi.org/10.1038/ncomms10557

    Article  ADS  Google Scholar 

  46. C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, O.D. Lavrentovich, Command of active matter by topological defects and patterns. Science 354(6314), 882–885 (2016). https://doi.org/10.1126/science.aah6936

    Article  ADS  Google Scholar 

  47. T.N. Shendruk, A. Doostmohammadi, K. Thijssen, J.M. Yeomans, Dancing disclinations in confined active nematics. Soft Matter 13, 3853–3862 (2017). https://doi.org/10.1039/C6SM02310J

    Article  ADS  Google Scholar 

  48. H. Reinken, S. Heidenreich, M. Bär, S.H.L. Klapp, Ising-like critical behavior of vortex lattices in an active fluid. Phys. Rev. Lett. 128, 048004 (2022). https://doi.org/10.1103/PhysRevLett.128.048004

    Article  ADS  MathSciNet  Google Scholar 

  49. Y. Maroudas-Sacks, L. Garion, L. Shani-Zerbib, A. Livshits, E. Braun, K. Keren, Topological defects in the nematic order of actin fibres as organization centres of hydra morphogenesis. Nat. Phys. 17(2), 251–259 (2021). https://doi.org/10.1038/s41567-020-01083-1

    Article  Google Scholar 

  50. L.A. Hoffmann, L.N. Carenza, J. Eckert, L. Giomi, Theory of defect-mediated morphogenesis. Sci. Adv. 8(15), 2712 (2022). https://doi.org/10.1126/sciadv.abk2712

    Article  Google Scholar 

  51. L.N. Carenza, G. Gonnella, D. Marenduzzo, G. Negro, Rotation and propulsion in 3d active chiral droplets. Proc. Natl. Acad. Sci. 116(44), 22065–22070 (2019). https://doi.org/10.1073/pnas.1910909116

    Article  ADS  Google Scholar 

  52. Hardoüin, J., Laurent, J., Lopez-Leon, T., Ignés-Mullol, J., Sagués, F.: Active boundary layers. arXiv preprint arXiv:2012.02740 (2020)

  53. J. Toner, Y. Tu, S. Ramaswamy, Hydrodynamics and phases of flocks. Ann. Phys. 318(1), 170–244 (2005). https://doi.org/10.1016/j.aop.2005.04.011. (Special Issue)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. F. Jülicher, K. Kruse, J. Prost, J.-F. Joanny, Active behavior of the cytoskeleton. Phys. Rep. 449(1), 3–28 (2007). https://doi.org/10.1016/j.physrep.2007.02.018. (Nonequilibrium physics: From complex fluids to biological systems III. Living systems)

    Article  ADS  MathSciNet  Google Scholar 

  55. S. Ramaswamy, The mechanics and statistics of active matter. Ann. Rev. Condens. Matter Phys. 1(1), 323–345 (2010). https://doi.org/10.1146/annurev-conmatphys-070909-104101

    Article  ADS  Google Scholar 

  56. T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517(3), 71–140 (2012). https://doi.org/10.1016/j.physrep.2012.03.004. (Collective motion)

    Article  ADS  Google Scholar 

  57. M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013). https://doi.org/10.1103/RevModPhys.85.1143

    Article  ADS  Google Scholar 

  58. M.J. Bowick, N. Fakhri, M.C. Marchetti, S. Ramaswamy, Symmetry, thermodynamics, and topology in active matter. Phys. Rev. X 12, 010501 (2022). https://doi.org/10.1103/PhysRevX.12.010501

    Article  Google Scholar 

  59. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995). https://doi.org/10.1103/PhysRevLett.75.1226

    Article  ADS  MathSciNet  Google Scholar 

  60. S. Henkes, Y. Fily, M.C. Marchetti, Active jamming: self-propelled soft particles at high density. Phys. Rev. E 84, 040301 (2011). https://doi.org/10.1103/PhysRevE.84.040301

    Article  ADS  Google Scholar 

  61. SciPy documentation. https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.cKDTree.html. Accessed 20 May 2022

  62. Y.G. Morel, X.J. Carton, Multipolar vortices in two-dimensional incompressible flows. J. Fluid Mech. 267, 23–51 (1994). https://doi.org/10.1017/S0022112094001102

  63. T.B. Saw, A. Doostmohammadi, V. Nier, L. Kocgozlu, S. Thampi, Y. Toyama, P. Marcq, C.T. Lim, J.M. Yeomans, B. Ladoux, Topological defects in epithelia govern cell death and extrusion. Nature 544(7649), 212–216 (2017). https://doi.org/10.1038/nature21718

    Article  ADS  Google Scholar 

  64. M.-A. Fardin, B. Ladoux, Living proof of effective defects. Nat. Phys. 17(2), 172–173 (2021). https://doi.org/10.1038/s41567-020-01084-0

    Article  Google Scholar 

  65. Serra, M., Lemma, L., Giomi, L., Dogic, Z., Mahadevan, L.: Defect-mediated dynamics of coherent structures in active nematics. arXiv preprint arXiv:2104.02196 (2021)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. BC4190050).

Author information

Authors and Affiliations

Authors

Contributions

ZY proposed the research project. YZ and ZY designed the research. YZ performed the research.

Corresponding author

Correspondence to Yi-Heng Zhang.

Appendix A Simplification of the order parameter

Appendix A Simplification of the order parameter

Since the repulsive force is reciprocal and adds up to zero, we take time average of Eq. (1a) and have

$$\begin{aligned} P&=\frac{1}{Nv_0}\left<\left|\sum _i^N\frac{\mathrm {d}\mathbf {r}_i(t)}{\mathrm {d}t}\right|\right>_t\nonumber \\&=\frac{1}{Nv_0}\left<\sqrt{\left( \sum _i^N\mathbf {v}_i\cdot \mathbf {\hat{e}}_\varphi \right) ^2 + \left( \sum _i^N\mathbf {v}_i\cdot \mathbf {\hat{e}}_\rho \right) ^2}\right>_t\ . \end{aligned}$$
(A1)

We separate \(\sum _i^N\mathbf {v}_i(t)\) at any given time by its time average \(\overline{\mathbf {V}}\) and the variation \(\delta \mathbf {V}(t)\)

$$\begin{aligned} \sum _i^N\mathbf {v}_i(t)&=\overline{\mathbf {V}}+\delta \mathbf {V}(t)\nonumber \\&=\left( \overline{V}_\varphi +\delta V_\varphi (t)\right) \mathbf {\hat{e}}_\varphi +\delta V_\rho (t)\mathbf {\hat{e}}_\rho \ . \end{aligned}$$
(A2)

The last equal sign is due to the conservation of N, and there is no net flow along the radial direction. By expanding Eq. (A1) with respect to the variation, we have

(A3)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YH., Yao, Z. Alignment rule and geometric confinement lead to stability of a vortex in active flow. Eur. Phys. J. E 46, 4 (2023). https://doi.org/10.1140/epje/s10189-023-00260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00260-3

Navigation