Skip to main content
Log in

Inferring turbulent environments via machine learning

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The problem of classifying turbulent environments from partial observation is key for some theoretical and applied fields, from engineering to earth observation and astrophysics, e.g., to precondition searching of optimal control policies in different turbulent backgrounds, to predict the probability of rare events and/or to infer physical parameters labeling different turbulent setups. To achieve such goal one can use different tools depending on the system’s knowledge and on the quality and quantity of the accessible data. In this context, we assume to work in a model-free setup completely blind to all dynamical laws, but with a large quantity of (good quality) data for training. As a prototype of complex flows with different attractors, and different multi-scale statistical properties we selected 10 turbulent ‘ensembles’ by changing the rotation frequency of the frame of reference of the 3d domain and we suppose to have access to a set of partial observations limited to the instantaneous kinetic energy distribution in a 2d plane, as it is often the case in geophysics and astrophysics. We compare results obtained by a machine learning (ML) approach consisting of a state-of-the-art deep convolutional neural network (DCNN) against Bayesian inference which exploits the information on velocity and entropy moments. First, we discuss the supremacy of the ML approach, presenting also results at changing the number of training data and of the hyper-parameters. Second, we present an ablation study on the input data aimed to perform a ranking on the importance of the flow features used by the DCNN, helping to identify the main physical contents used by the classifier. Finally, we discuss the main limitations of such data-driven methods and potential interesting applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available in the Smart-Turb repository, http://smart-turb.roma2.infn.it.

References

  1. A. Corbetta, V. Menkovski, R. Benzi, and F. Toschi, Deep learning velocity signals allow quantifying turbulence intensity. Sci. Adv. 7(12):eaba7281, 2021

  2. A. Alexakis, Luca Biferale, Cascades and transitions in turbulent flows. Phys. Rep. 767, 1–101 (2018)

    Article  ADS  Google Scholar 

  3. U. Frisch, Turbulence: The Legacy of AN Kolmogorov (Cambridge University Press, Cambridge, 1995)

    Book  MATH  Google Scholar 

  4. B. Stephen, Pope (Cambridge University Press, Turbulent Flows, 2000)

    Google Scholar 

  5. P.A. Davidson, Y. Kaneda, K. Moffatt, K.R. Sreenivasan, A Voyage Through Turbulence (Cambridge University Press, Cambridge, 2011)

    Book  MATH  Google Scholar 

  6. K. Duraisamy, G. Iaccarino, Heng Xiao, Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51, 357–377 (2019)

    Article  MATH  ADS  Google Scholar 

  7. L. Biferale, F. Bonaccorso, M. Buzzicotti, P.C. Di Leoni, K. Gustavsson, Zermelo’s problem: optimal point-to-point navigation in 2d turbulent flows using reinforcement learning. Chaos Interdiscip. J. Nonlinear Sci. 29(10), 103138 (2019)

    Article  Google Scholar 

  8. G. Novati, L. Mahadevan, P. Koumoutsakos, Controlled gliding and perching through deep-reinforcement-learning. Phys. Rev. Fluids 4(9), 093902 (2019)

    Article  ADS  Google Scholar 

  9. N. Orzan, C. Leone, A. Mazzolini, J. Oyero, and A. Celani, Optimizing airborne wind energy with reinforcement learning. arXiv preprint arXiv:2203.14271 (2022)

  10. P. Garnier, J. Viquerat, J. Rabault, A. Larcher, A. Kuhnle, Elie Hachem, A review on deep reinforcement learning for fluid mechanics. Comput. Fluids 225, 104973 (2021)

    Article  MATH  Google Scholar 

  11. S. Colabrese, K. Gustavsson, A. Celani, Luca Biferale, Flow navigation by smart microswimmers via reinforcement learning. Phys. Rev. Lett. 118(15), 158004 (2017)

    Article  ADS  Google Scholar 

  12. G. Reddy, A. Celani, T. J. Sejnowski, and M. Vergassola, Learning to soar in turbulent environments. In: Proceedings of the national academy of sciences, 113(33):E4877–E4884 (2016)

  13. G. Reddy, J. Wong-Ng, A. Celani, T.J. Sejnowski, M. Vergassola, Glider soaring via reinforcement learning in the field. Nature 562(7726), 236–239 (2018)

    Article  ADS  Google Scholar 

  14. R. Scatamacchia, L. Biferale, F. Toschi, Extreme events in the dispersions of two neighboring particles under the influence of fluid turbulence. Phys. Rev. Lett. 109(14), 144501 (2012)

    Article  ADS  Google Scholar 

  15. M. Buzzicotti, Guillaume Tauzin, Inertial range statistics of the entropic lattice Boltzmann method in three-dimensional turbulence. Phys. Rev. E 104(1), 015302 (2021)

    Article  ADS  Google Scholar 

  16. L. Biferale, F. Bonaccorso, I.M. Mazzitelli, M.A. van Hinsberg, A.S. Lanotte, S. Musacchio, P. Perlekar, F. Toschi, Coherent structures and extreme events in rotating multiphase turbulent flows. Phys. Rev. X 6(4), 041036 (2016)

    Google Scholar 

  17. D. Buaria, A. Pumir, Eberhard Bodenschatz, Self-attenuation of extreme events in Navier-stokes turbulence. Nat. Commun. 11(1), 1–7 (2020)

    Article  Google Scholar 

  18. P.K. Yeung, X.M. Zhai, K.R. Sreenivasan, Extreme events in computational turbulence. Proc. Natl. Acad. Sci. 112(41), 12633–12638 (2015)

    Article  ADS  Google Scholar 

  19. R. Maulik, O. San, A. Rasheed, Prakash Vedula, Subgrid modelling for two-dimensional turbulence using neural networks. J. Fluid Mech. 858, 122–144 (2019)

    Article  MATH  ADS  Google Scholar 

  20. J. Pathak, M. Mustafa, K. Kashinath, E. Motheau, T. Kurth, and M. Day, Using machine learning to augment coarse-grid computational fluid dynamics simulations. arXiv preprint arXiv:2010.00072 (2020)

  21. D. Kochkov, J.A. Smith, A. Alieva, Q. Wang, M.P. Brenner, S. Hoyer, Machine learning-accelerated computational fluid dynamics. Proc. Natl. Acad. Sci. 118(21), e2101784118 (2021)

    Article  Google Scholar 

  22. L. Biferale, F. Bonaccorso, M. Buzzicotti, K.P. Iyer, Self-similar subgrid-scale models for inertial range turbulence and accurate measurements of intermittency. Phys. Rev. Lett. 123(1), 014503 (2019)

    Article  ADS  Google Scholar 

  23. G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics (Cambridge University Press, Cambridge, 2017)

    Book  MATH  Google Scholar 

  24. J. Pedlosky et al., Geophysical Fluid Dynamics, vol. 710 (Springer, Cham, 1987)

    Book  MATH  Google Scholar 

  25. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  26. E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  27. M Buzzicotti, B A Storer, S M Griffies, and H Aluie. A coarse-grained decomposition of surface geostrophic kinetic energy in the global ocean. Earth Space Sci. Open Arch p. 58 (2021)

  28. A. Carrassi, M. Ghil, A. Trevisan, F. Uboldi, Data assimilation as a nonlinear dynamical systems problem: stability and convergence of the prediction-assimilation system. Chaos Interdiscip. J. Nonlinear Sci. 18(2), 023112 (2008)

    Article  MATH  Google Scholar 

  29. S.L. Brunton, J.L. Proctor, J.N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932–3937 (2016)

    Article  MATH  ADS  Google Scholar 

  30. M. Bocquet, J. Brajard, A. Carrassi, Laurent Bertino, Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models. Nonlinear Process. Geophys. 26(3), 143–162 (2019)

    Article  ADS  Google Scholar 

  31. L.M. Smith, F. Waleffe, Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11(6), 1608–1622 (1999)

    Article  MATH  ADS  Google Scholar 

  32. P.D. Mininni, A. Pouquet, Helicity cascades in rotating turbulence. Phys. Rev. E 79(2), 026304 (2009)

    Article  ADS  Google Scholar 

  33. Luca Biferale, Rotating turbulence. J. Turbul. 22(4–5), 232–241 (2021)

    Article  ADS  Google Scholar 

  34. P.C. Di Leoni, A. Alexakis, L. Biferale, M. Buzzicotti, Phase transitions and flux-loop metastable states in rotating turbulence. Phys. Rev. Fluids 5(10), 104603 (2020)

    Article  ADS  Google Scholar 

  35. X. Zou, I.M. Navon, F.X. LeDimet, An optimal nudging data assimilation scheme using parameter estimation. Q. J. R. Meteorol. Soc. 118(508), 1163–1186 (1992)

    Article  ADS  Google Scholar 

  36. J.J. Ruiz, M. Pulido, T. Miyoshi, Estimating model parameters with ensemble-based data assimilation: a review. J. Meteorol. Soc. Japan. Ser. II 91(2), 79–99 (2013)

    Article  ADS  Google Scholar 

  37. P.C. Di Leoni, A. Mazzino, L. Biferale, Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging. Phys. Rev. Fluids 3(10), 104604 (2018)

    Article  ADS  Google Scholar 

  38. P.C. di Leoni, P.J. Cobelli, P.D. Mininni, The spatio-temporal spectrum of turbulent flows. Eur. Phys. J. E 38(12), 1–10 (2015)

    Google Scholar 

  39. P.C. Di Leoni, A. Mazzino, L. Biferale, Synchronization to big data: nudging the Navier-stokes equations for data assimilation of turbulent flows. Phys. Rev. X 10(1), 011023 (2020)

    Google Scholar 

  40. M. Buzzicotti, P.C. Di Leoni, Synchronizing subgrid scale models of turbulence to data. Phys. Fluids 32(12), 125116 (2020)

    Article  ADS  Google Scholar 

  41. M.P. Brenner, J.D. Eldredge, J.B. Freund, Perspective on machine learning for advancing fluid mechanics. Phys. Rev. Fluids 4(10), 100501 (2019)

    Article  ADS  Google Scholar 

  42. K. Duraisamy, G. Iaccarino, Heng Xiao, Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51(1), 357–377 (2019)

    Article  MATH  ADS  Google Scholar 

  43. R. Vinuesa, S.L. Brunton, Enhancing computational fluid dynamics with machine learning. Nat. Comput. Sci. 2(6), 358–366 (2022)

    Article  Google Scholar 

  44. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, London, 2016)

    MATH  Google Scholar 

  45. S.L. Brunton, J.N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control (Cambridge University Press, Cambridge, 2019)

    Book  MATH  Google Scholar 

  46. S.L. Brunton, B.R. Noack, P. Koumoutsakos, Machine learning for fluid mechanics. Ann. Rev. Fluid Mech. 52, 477–508 (2020)

    Article  MATH  ADS  Google Scholar 

  47. M. Buzzicotti, F. Bonaccorso, P.C. Di Leoni, L. Biferale, Reconstruction of turbulent data with deep generative models for semantic inpainting from turb-rot database. Phys. Rev. Fluids 6(5), 050503 (2021)

    Article  ADS  Google Scholar 

  48. J. Brajard, A. Carrassi, M. Bocquet, and L. Bertino, Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the lorenz 96 model. Geoscientific Model Development Discussions, pp. 1–21 (2019)

  49. F. Borra, M. Baldovin, Using machine-learning modeling to understand macroscopic dynamics in a system of coupled maps. Chaos Interdiscip. J. Nonlinear Sci. 31(2), 023102 (2021)

    Article  Google Scholar 

  50. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  51. K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

  52. O. Ronneberger, P. Fischer, and T. Brox, U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp. 234–241. Springer (2015)

  53. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788 (2016)

  54. E. Deusebio, G. Boffetta, E. Lindborg, Stefano Musacchio, Dimensional transition in rotating turbulence. Phys. Rev. E 90(2), 023005 (2014)

    Article  ADS  Google Scholar 

  55. R. Marino, P.D. Mininni, D. Rosenberg, A. Pouquet, Inverse cascades in rotating stratified turbulence: fast growth of large scales. Eur. Phys. Lett. 102(4), 44006 (2013)

    Article  ADS  Google Scholar 

  56. R. Marino, P.D. Mininni, D.L. Rosenberg, A. Pouquet, Large-scale anisotropy in stably stratified rotating flows. Phys. Rev. E 90(2), 023018 (2014)

    Article  ADS  Google Scholar 

  57. M. Buzzicotti, H. Aluie, L. Biferale, Moritz Linkmann, Energy transfer in turbulence under rotation. Phys. Rev. Fluids 3(3), 034802 (2018)

    Article  ADS  Google Scholar 

  58. M. Buzzicotti, P.C. Leoni, L. Biferale, On the inverse energy transfer in rotating turbulence. Eur. Phys. J. E 41(11), 1–8 (2018)

    Article  Google Scholar 

  59. K. Seshasayanan, Alexandros Alexakis, Condensates in rotating turbulent flows. J. Fluid Mech. 841, 434–462 (2018)

    Article  MATH  ADS  Google Scholar 

  60. A. van Kan and A. Alexakis, Critical transition in fast-rotating turbulence within highly elongated domains. J. Fluid Mech. 899 (2020)

  61. J. Janai, F. Güney, A. Behl, A. Geiger et al., Computer vision for autonomous vehicles: problems, datasets and state of the art. Found. Trends Comput. Graph. Vis. 12(1–3), 1–308 (2020)

    Article  Google Scholar 

  62. H. Maron, O. Litany, G. Chechik, and E. Fetaya. On learning sets of symmetric elements. In International conference on machine learning, pp. 6734–6744. PMLR (2020)

  63. S. Pidhorskyi, R. Almohsen, D. A. Adjeroh, and G. Doretto, Generative probabilistic novelty detection with adversarial autoencoders. arXiv preprint arXiv:1807.02588 (2018)

  64. M. Tan, R. Pang, and Q. V. Le, Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10781–10790 (2020)

  65. S.S. Chouhan, U.P. Singh, S. Jain, Applications of computer vision in plant pathology: a survey. Arch. Comput. Methods Eng. 27(2), 611–632 (2020)

    Article  Google Scholar 

  66. W.-H. Cheng, S. Song, C.-Y. Chen, S.C. Hidayati, J. Liu, Fashion meets computer vision: a survey. ACM Comput. Surv. (CSUR) 54(4), 1–41 (2021)

    Article  Google Scholar 

  67. X. Feng, Y. Jiang, X. Yang, D. Ming, Xin Li, Computer vision algorithms and hardware implementations: a survey. Integration 69, 309–320 (2019)

    Article  Google Scholar 

  68. D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A Efros, Context encoders: feature learning by inpainting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2536–2544 (2016)

  69. C. E. Rasmussen et al., The infinite gaussian mixture model. In NIPS, vol 12, pp. 554–560. Citeseer (1999)

  70. D.A. Reynolds, Gaussian mixture models. Encycl. Biomet. 741, 659–663 (2009)

    Article  Google Scholar 

  71. X. He, D. Cai, Y. Shao, H. Bao, Jiawei Han, Laplacian regularized gaussian mixture model for data clustering. IEEE Trans. Knowl. Data Eng. 23(9), 1406–1418 (2011)

    Article  Google Scholar 

  72. Wu. Zhao, Jin Lee, C. Meneveau, T. Zaki, Application of a self-organizing map to identify the turbulent-boundary-layer interface in a transitional flow. Phys. Rev. Fluids 4(2), 023902 (2019)

    Article  ADS  Google Scholar 

  73. X. Zhang, Anand Natarajan, Gaussian mixture model for extreme wind turbulence estimation. Wind Energy Sci. 7(5), 2135–2148 (2022)

    Article  ADS  Google Scholar 

  74. L. Biferale, F. Bonaccorso, M. Buzzicotti, and P. C. di Leoni. TURB-Rot. A large database of 3d and 2d snapshots from turbulent rotating flows. http://smart-turb.roma2.infn.it. arXiv:2006.07469 (2020)

  75. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) symposium on operating systems design and implementation (\(\{\)OSDI\(\}\) 16), pp. 265–283 (2016)

  76. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MATH  Google Scholar 

  77. T. Dozat. Incorporating nesterov momentum into adam (2016)

  78. J. Ling, Jeremy Templeton, Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier stokes uncertainty. Phys. Fluids 27(8), 085103 (2015)

    Article  ADS  Google Scholar 

  79. W. Jin-Long, H. Xiao, Eric Paterson, Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework. Phys. Rev. Fluids 3(7), 074602 (2018)

    Article  ADS  Google Scholar 

  80. Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar, Neural operator: graph kernel network for partial differential equations. arXiv preprint arXiv:2003.03485 (2020)

  81. X.-H. Zhou, J. Han, Heng Xiao, Frame-independent vector-cloud neural network for nonlocal constitutive modeling on arbitrary grids. Comput. Methods Appl. Mech. Eng. 388, 114211 (2022)

  82. R.C. Aster, B. Borchers, C.H. Thurber, Parameter Estimation and Inverse Problems (Elsevier, London, 2018)

  83. B. Efron, A 250-year argument: belief, behavior, and the bootstrap. Bull. Am. Math. Soc. 50(1), 129–146 (2013)

  84. David JC. MacKay, Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992)

    Article  MATH  Google Scholar 

  85. M. Lellep, J. Prexl, B. Eckhardt, and M. Linkmann, Interpreted machine learning in fluid dynamics: explaining relaminarisation events in wall-bounded shear flows. J. Fluid Mech. 942 (2022)

  86. D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  MATH  ADS  Google Scholar 

  87. K.T. Bhatia, G.A. Vecchi, T.R. Knutson, H. Murakami, J. Kossin, K.W. Dixon, C.E. Whitlock, Recent increases in tropical cyclone intensification rates. Nat. Commun. 10(1), 1–9 (2019)

    Article  Google Scholar 

  88. X. Wenwei, K. Balaguru, A. August, N. Lalo, N. Hodas, M. DeMaria, David Judi, Deep learning experiments for tropical cyclone intensity forecasts. Weather Forecast. 36(4), 1453–1470 (2021)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Luca Biferale for inspiration and many useful discussions. This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 882340), and by the project Beyond Borders (CUP): E84I19002270005 funded by the University of Rome Tor Vergata.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Michele Buzzicotti.

Additional information

Quantitative AI in Complex Fluids and Complex Flows: Challenges and Benchmarks. Guest editors: Luca Biferale, Michele Buzzicotti, Massimo Cencini. .

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buzzicotti, M., Bonaccorso, F. Inferring turbulent environments via machine learning. Eur. Phys. J. E 45, 102 (2022). https://doi.org/10.1140/epje/s10189-022-00258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00258-3

Navigation