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Abstract Hardly any theoretically formulated realistic problem can be solved exactly. Therefore, as a
standard, we resort to approximations. In this context, expansions play a major role. We are used to relying
on lowest-order expansions and confining our point of view accordingly. However, one should always bear in
mind that such considerations may fail at some point. Here, we address a very common example situation,
namely, the motion of a Brownian particle. We know that the associated mean-squared displacement in the
long term increases linearly in time. Yet, when we take the Fokker–Planck approach in combination with
a low-order expansion, the direct route towards this result fails. That is, in the expansion the term linear
in time vanishes. Instead, the treatment requires consideration of all higher-order contributions. Together,
they restore the linear increase in time. In this way, we stress that care is always mandatory when resorting
to low-order expansions, and we present in a traceable way a route to solving the considered problem.

1 Introduction

Claiming that in theoretical physics expansions in terms
of power series are common almost sounds like an
understatement. The harmonic oscillator, interpreted
as the result of a lowest-order expansion in potential
energy, is of textbook caliber, both in classical and
quantum mechanics [1–3]. Moreover, we may regard
Newtonian mechanics in general as an expansion of the
special theory of relativity to low orders in velocity [3].
The same applies to hydrodynamics [4] in the context
of the general theory of relativity [5] to low orders in
velocity and mass density. Besides, the central equation
of hydrodynamics, the Navier-Stokes equation, employs
a lowest-order expansion in the symmetrized velocity
gradient for the terms associated with viscous stress
[4]. Textbook electrodynamics mostly is restricted to
terms linear in the electric and magnetic fields [6].
Several famous treatments of elasticity theory put a
major emphasis on quadratic terms in the energy den-
sity [7]. In many of these situations, if nonlinearities
are considered, they are added as higher-order terms in
the notion of a power series. Other examples concern
generalized hydrodynamics [8,9] or expansions in actu-
ally not small quantities such as space dimension [10].
All these approaches have proven highly successful and
have their justification.
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Despite this triumph one should always keep in mind
that power series expansions are only an approxima-
tion and, depending on the context, may fail. In our
minimal example, we refer to the stochastic motion of
a Brownian particle when subject to linear friction and
a stochastic driving force. We address this situation in
the framework of the Fokker–Planck equation [11–14].

On short time scales, motion, if not completely
overdamped, is ballistic. Yet, it becomes diffusive on
longer scales. That is, the mean squared displace-
ment increases linearly in time. We calculate the mean
squared displacement using a power series. There, the
term linear in time vanishes, which appears as a contra-
diction to the linear increase. As it turns out, to solve
this riddle, all higher-order contributions of the power
series need to be taken into account as well. Together,
they restore the linear increase in time in the long-term
limit.

The remaining contents are as follows. In Sect. 2,
we recall the underlying stochastic Langevin and,
after rescaling, associated Fokker–Planck equations. We
show in Sect. 3 that a lowest-order expansion in time
fails to predict the linear, diffusive time dependence
of the mean squared displacement. Subsequently, we
demonstrate in Sect. 4 how the addition of all higher-
order contributions restores this linear dependence. A
simple comparison with numerical integration of the
Langevin equations and the resulting expression of the
diffusion coefficient confirm our solution, see Sect. 5.
We conclude in Sect. 6.
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2 Stochastic equations of motion

To keep our example as simple as possible, we address
the stochastic motion of a single Brownian particle in
one spatial dimension. There, we mark by x the space
coordinate and by v the velocity. This leads us to the
conventional Langevin-type equations of motion [15]

m
dv

dt
= −ζ v + Γ(t), (1)

dx

dt
= v, (2)

where t denotes time. Moreover, m is the mass of
the Brownian particle and ζ represents the coefficient
of linear friction that always acts against the current
direction of motion. Γ(t) corresponds to the stochastic
force that the particle is exposed to at time t. As is
common, we consider Γ(t) to be distributed according
to a Gaussian form and δ-correlated in time, so that
〈Γ(t)〉 = 0 and 〈Γ(t)Γ(t′)〉 = 2K δ(t − t′). Thus, K sets
the strength of the stochastic force acting on the Brow-
nian particle. Physically, thermal fluctuations provide
the background of this stochastic force. Therefore, K
is set by the fluctuation–dissipation theorem, that is,
K = ζ kBT , where kB is the Boltzmann constant and
T denotes temperature.

Through well-known procedures, Eqs. (1) and (2)
are transformed to the associated Fokker–Planck equa-
tion [13–15]. After rescaling, we obtain in dimensionless
form

∂tf =
{−v ∂x + ∂vv + ∂2

v

}
f. (3)

Here, f = f(x, v, t) represents the probability distribu-
tion to find the particle at time t with velocity v at posi-
tion x. Normalization implies

∫ ∞
−∞ dx

∫ ∞
−∞ dv f(x, v, t)

= 1. We have rescaled x by (Km/ζ3)1/2, v by
(K/mζ)1/2, t by m/ζ, and f by ζ2/K, where the latter
is necessary to maintain the normalization condition.
Overall, there is no free parameter left in Eq. (3) so
that our subsequent considerations apply to any Brow-
nian particle.

Without loss of generality, we consider the Brownian
particle to be located at time t = 0 at position x = 0.
In this way, we specify as an initial condition for the
probability distribution

f0 := f(x, v, t = 0) =
1√
2π

e− 1
2v2

δ(x). (4)

Again, δ denotes the Dirac delta function. The expo-
nential represents the equilibrium Boltzmann velocity
distribution in our rescaled units.

3 Lowest order in time

We know that in the long term the mean squared dis-
placement of a Brownian particle increases linearly in
time. Thus, it is a tempting idea to expand the cor-
responding expression to lowest order in time and in
this way determine the associated diffusion coefficient
according to the relation 〈x2〉 = 2Dt.

Along these lines, we proceed via the formal solution
of Eq. (3),

f = et(−v ∂x+∂vv+∂2
v)f0. (5)

Thus, we find for the mean squared displacement

〈x2〉 =
∫ ∞

−∞
dx

∫ ∞

−∞
dv x2 et(−v ∂x+∂vv+∂2

v)f0

=
∫ ∞

−∞
dx

∫ ∞

−∞
dv f0 et(v ∂x−v∂v+∂2

v)x2, (6)

where we used partial integration to shift the exponen-
tial operator from f0 to x2 (see the “Appendix” for
details).

In order to identify the lowest order in time t, we
expand the exponential. To zeroth order in t, inserting
Eq. (4), we obtain on the second line of Eq. (6)

∫ ∞

−∞
dx

∫ ∞

−∞
dv f0 x2 = 0, (7)

which results from the Dirac delta function in f0. Next,
to first order in t, we might expect a nonvanishing con-
tribution. After all, we know that the mean squared
displacement in the end increases linearly in time. How-
ever, we find

∫ ∞

−∞
dx

∫ ∞

−∞
dv f0 t

(
v∂x − v∂v + ∂2

v

)
x2

=
∫ ∞

−∞
dx

∫ ∞

−∞
dv f0 t 2xv

= 0 (8)

which follows again by inserting Eq. (4). The mean
squared displacement therefore does not increase lin-
early in time to lowest order. Instead, we find to second
order in time t together with Eq. (4)

∫ ∞

−∞
dx

∫ ∞

−∞
dv f0

1
2
t2

(
v∂x − v∂v + ∂2

v

)2
x2,

=
1
2
t2

∫ ∞

−∞
dx

∫ ∞

−∞
dv f0

(
2v2 − 2xv

)

= t2. (9)

Thus, the lowest nonvanishing order of the mean
squared displacement is quadratic in time, not linear.
On the one hand, this is reasonable because it identifies
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the initial ballistic regime of motion for the Brownian
particle, which later crosses over to diffusive motion. On
the other hand, this triggers the question of how, then,
at later times, can the motion become diffusive, that is,
linear in time, if the linear term obviously vanishes?

4 Higher-order contributions

It turns out that, in order to answer this question, we
need to calculate all higher-order contributions. To this
end, we consider the power series expansion of the expo-
nential

et(v∂x−v∂v+∂2
v)x2 =

∞∑

n=0

1
n!

tn
(
v∂x−v∂v+∂2

v

)n
x2.

(10)

Applying the operator in brackets once to x2, we find
for the nth term

2
1
n!

tn
(
v∂x − v∂v + ∂2

v

)n−1
xv; (11)

twice, we find

2
1
n!

tn
(
v∂x − v∂v + ∂2

v

)n−2 (
v2 − xv

)
; (12)

three times, we find

2
1
n!

tn
(
v∂x − v∂v + ∂2

v

)n−3 (−3v2 + xv + 2
)
;

(13)

four times, we find

2
1
n!

tn
(
v∂x − v∂v + ∂2

v

)n−4 (
7v2 − xv − 6

)
; (14)

five times, we find

2
1
n!

tn
(
v∂x − v∂v + ∂2

v

)n−5 (−15v2 + xv + 14
)
;

(15)

six times, we find

2
1
n!

tn
(
v∂x − v∂v + ∂2

v

)n−6 (
31v2 − xv − 30

)
;

(16)

seven times, we find

2
1
n!

tn
(
v∂x − v∂v + ∂2

v

)n−7 (−63v2 + xv + 62
)
;

(17)

and so on. Thus, Eqs. (11)–(17) directly provide the
results for the terms for n = 1–7 by inserting these
numbers, respectively.

Our claim from inspecting Eqs. (11)–(17) is that the
nth term in the power series of Eq. (10) for n ≥ 2 is
given by

2
1
n!

tn
[
(−1)n−1xv + (−1)n

(
2n−1 − 1

)
v2

+(−1)n−1
(
2n−1 − 2

) ]
. (18)

We prove this claim by induction in that we apply
once more the operator

(
v∂x − v∂v + ∂2

v

)
to the term

in square brackets in Eq. (18),

(
v∂x − v∂v + ∂2

v

) [
(−1)n−1xv + (−1)n

(
2n−1 − 1

)
v2

+(−1)n−1
(
2n−1 − 2

) ]

= (−1)n−1v2 + (−1)nxv − 2(−1)n
(
2n−1 − 1

)
v2

+2(−1)n
(
2n−1 − 1

)

= (−1)(n+1)−1xv + (−1)n+1
(
2(n+1)−1 − 1

)
v2

+(−1)(n+1)−1
(
2(n+1)−1 − 2

)
. (19)

This result equals the term in square brackets in
Eq. (18) with n increased by 1, which completes the
induction. Moreover, Eq. (18) for n = 2 leads to the
same result as Eq. (12) for n = 2. Together, we have
proven that Eq. (18) provides the correct result for
terms n ≥ 2 in the power series of Eq. (10).

Summarizing, we find

et(v∂x−v∂v+∂2
v)x2

= x2 + 2txv + 2
∞∑

n=2

1
n!

tn
[
(−1)n−1xv

+(−1)n
(
2n−1 − 1

)
v2

+(−1)n−1
(
2n−1 − 2

) ]
. (20)

This expression is inserted into Eq. (6). Together with
f0, we integrate it over x and v. Due to the form of f0,
see Eq. (4), the integration of x and x2 yields 0. The
integration of v2 together with f0 yields 1.

Combining Eqs. (4), (6), and (20), we therefore
obtain

〈x2〉 = 2
∞∑

n=2

1
n!

tn(−1)n
[
2n−1 − 1 − (2n−1 − 2)

]

= 2
∞∑

n=2

1
n!

(−t)n. (21)

In this expression, we identify the power series expan-
sion of an exponential, except that the zeroth- and first-
order contributions are missing. The latter observation

123



77 Page 4 of 6 Eur. Phys. J. E (2022) 45 :77

is crucial. It takes us back to the result in Sect. 3 of
vanishing linear order in time of the mean squared dis-
placement. Now, however, we can resolve this issue.

Formally, we may provide the zeroth- and first-order
contributions by adding them, if we directly subtract
them again. In this way, we can reformulate the sum to
an exponential form,

〈x2〉 = −2 + 2t + 2
∞∑

n=0

1
n!

(−t)n

= 2
(
t − 1 + e−t

)
. (22)

Thus, introducing the exponential adds the term linear
in time to the mean squared displacement.

This is our central result. It now does contain explic-
itly the linear dependence of the mean squared displace-
ment on time, which identifies diffusive behavior. This
is true particularly at elevated times when the expo-
nential dependence has decayed towards zero. At short
times, we again find the ballistic behavior 〈x2〉 ≈ t2 to
lowest order, as already identified in Sect. 3.

Interpreting Eq. (22) and the way that guided us
towards it leads us to the following observation. The lin-
ear dependence on time of the mean squared displace-
ment is not found as a low-order term from its power
series expansion. Instead, in the power series expansion,
the term linear in time initially vanishes, which may
come as a bit of a surprise if one is used to working with
power series expansions on a daily basis. Remarkably,
however, all higher-order terms act together to restore
the linear dependence. We have revealed this context
in Eq. (22) by completing the power series expansion
of the exponential function. Therefore, we note that all
higher-order terms here are necessary and contribute to
obtain the low-order linear dependence on time of the
mean squared displacement.

5 Confirmation of our result

To briefly test our result in Eq. (22), we perform
straightforward particle-based simulations of Eqs. (1)
and (2), after rescaling them to dimensionless units.
The values of the stochastic force are drawn from a ran-
dom number generator [16] and cast to a Gaussian dis-
tribution [17]. We calculate the trajectories using sim-
ple Euler forward integration in time and a time step of
Δt = 0.001. To obtain the mean squared displacement,
we average over 106 particle trajectories.

Our results from the particle-based simulations are
shown in Fig. 1 together with our functional form dis-
played in Eq. (22). Both approaches lead to identical
curves, which verifies our calculation and interpreta-
tion.

A final check concerns the diffusion coefficient D. Via
the definition 〈x2〉 = 2Dt, we obtain from the term lin-
ear in time t in Eq. (22) the value D = 1 in rescaled
units. Scaling the equation 〈x2〉 = 2Dt back to dimen-

Fig. 1 Mean squared displacement for the motion of
a Brownian particle. We compare the functional form
obtained in Eq. (22) by analytical calculation from the
Fokker–Planck equation (“FP”, solid line) involving all
higher-order contributions with results from particle-based
simulations of the Langevin representation (“L”, data
points) in Eqs. (1) and (2). Both types of approach lead
to identical curves

sionful spatial positions x and times t, we find

D =
kBT

ζ
. (23)

This is the correct result according to the fluctuation–
dissipation relation [15].

6 Conclusions

The main purpose of our work is to demonstrate on a
very basic, illustrative example that expansions to given
finite orders can lead to misleading results. Specifically,
we address the mean squared displacement of an indi-
vidual particle performing Brownian motion. We calcu-
late this quantity in an analytical, yet unconventional
way. To this end, the formal solution to the associated
Fokker–Planck equation for the probability distribution
in exponential form is employed.

Expanding this solution demonstrates that the low-
order contribution linear in time vanishes. This observa-
tion contradicts our experience that the mean squared
displacement for the diffusive behavior of Brownian
particles does grow linearly in time. Remarkably, as
we have demonstrated, we instead need to evaluate
all higher-order contributions. Together, they to lowest
order restore the linear time dependence characteristic
for the diffusive behavior.

We briefly recapitulate the physical reason for the
failure of reproducing the linear growth of the mean
squared displacement in time by the low-order expan-
sion. In our situation, we correctly identified the initial
but transient ballistic behavior of the Brownian parti-
cle. It is this behavior at the earliest times that is asso-
ciated with the lowest-order temporal terms, correctly
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identified on the smallest time scales of the problem.
Thus, caution is generally appropriate when dealing
with series expansions in situations or systems featur-
ing transient initial or intermediate regimes. For clarity,
we repeat that, in our investigation, we did not assume
the dynamics of the Brownian particle to be completely
overdamped. Instead, we kept the inertial contribution.

Our motivation behind this presentation is twofold.
On the one hand, we wish to outline the unconven-
tional way of calculating the mean squared displace-
ment. Although a bit more complex, this route may
open the possibility to calculate diffusion coefficients
also in the context of stochastic motion under nonlin-
ear friction [18–25]. On the other hand, we wish to
stress, using this basic example, that we always need
to scrutinize the strategies of solution that we apply.
Depending on the context, this statement even applies
to well-established and straightforward basic expansion
techniques. In the present framework, we demonstrate
how the initial question of vanishing linear order can
be solved by including all higher-order contributions.
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Appendix

In this appendix, we briefly illustrate an explicit way to
perform the partial integration in Eq. (6). We first expand

the exponential as
∫ ∞

−∞
dx

∫ ∞

−∞
dv x2 et(−v ∂x+∂vv+∂2

v)f0

=

∫ ∞

−∞
dx

∫ ∞

−∞
dv x2

×
∞∑

n=0

1

n!
tn (−v∂x + ∂vv + ∂2

v

)n
f0. (24)

In each order n (n ≥ 1), we start from the left-most operator(−v∂x + ∂vv + ∂2
v

)
and shift it by partial integration to x2

under the two integrals, where we keep all ∂v-derivatives
(even if they vanish),

∫ ∞

−∞
dx

∫ ∞

−∞
dv x2 1

n!
tn (−v∂x + ∂vv + ∂2

v

)n
f0

=

∫ ∞

−∞
dx

∫ ∞

−∞
dv x2 1

n!
tn (−v∂x + ∂vv + ∂2

v

)

× (−v∂x + ∂vv + ∂2
v

)n−1
f0

=

∫ ∞

−∞
dx

∫ ∞

−∞
dv

1

n!
tn

[ (
v∂x − v∂v + ∂2

v

)
x2

]

× (−v∂x + ∂vv + ∂2
v

)n−1
f0. (25)

f0 and its derivatives vanish at infinity, both in x- and v-
direction, thus no contributions arise from there. We con-
tinue in the same way successively from the left to the right

with the remaining n − 1 operators
(−v∂x + ∂vv + ∂2

v

)n−1

on the last line of Eq. (25). Each operator
(−v∂x + ∂vv + ∂2

v

)
becomes

(
v∂x − v∂v + ∂2

v

)
upon partial integration. In this

way, we finally obtain from Eq. (24) via Eq. (25)

∫ ∞

−∞
dx

∫ ∞

−∞
dv f0

∞∑
n=0

1

n!
tn (

v∂x − v∂v + ∂2
v

)n
x2

=

∫ ∞

−∞
dx

∫ ∞

−∞
dv f0 et(v∂x−v∂v+∂2

v)x2. (26)
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